1.Effect of acetylalkannin from Arnebia euchroma on proliferation, migration, and invasion of human melanoma A375 cells.
Ying-Ying KANG ; Qian QIAN ; Ya YANG ; Ying YANG ; Fang XU ; Min LI ; Jian-Guang LI
China Journal of Chinese Materia Medica 2023;48(18):5049-5055
This study aimed to explore the effect and mechanism of acetylalkannin from Arnebia euchroma on the proliferation, migration, and invasion of human melanoma A375 cells. A375 cells were divided into a blank group, and low-, medium-, and high-dose acetylalkannin groups(0.5, 1.0, and 2.0 μmol·L~(-1)). The MTT assay was used to detect cell proliferation. Cell scratch and transwell migration assays were used to detect cell migration ability, and the transwell invasion assay was used to detect cell invasion ability. Western blot was used to detect the protein expression of migration and invasion-related N-cadherin, vimentin, matrix metalloproteina-se-9(MMP-9), and Wnt/β-catenin pathway-related Wnt1, Axin2, glycogen synthase kinase-3β(GSK-3β), phosphorylated GSK-3β(p-GSK-3β), β-catenin, cell cycle protein D_1(cyclin D_1), and p21. Real-time fluorescence-based quantitative polymerase chain reaction(real-time PCR) was used to detect the mRNA expression of E-cadherin, matrix metalloproteinase-2(MMP-2), N-cadherin, vimentin, β-catenin, snail-1, and CD44. MTT results showed that the cell inhibition rates in the acetylalkannin groups significantly increased as compared with that in the blank group(P<0.01). The results of cell scratch and transwell assays showed that compared with the blank group, the acetylalkannin groups showed reduced cell migration and invasion, and migration and invasion rates(P<0.05, P<0.01) and weakened horizontal and vertical migration and invasion abilities. Western blot results showed that compared with the blank group, the high-dose acetylalkannin group showed increased expression of Axin2 protein(P<0.05), and decreased expression of N-cadherin, vimentin, MMP-9, Wnt1, p-GSK-3β, β-catenin, cyclin D_1, and p21 proteins(P<0.05, P<0.01). The expression of GSK-3β protein did not change significantly. PCR results showed that the overall trend of MMP-2, N-cadherin, vimentin, β-catenin, snail-1, and CD44 mRNA expression was down-regulated(P<0.01), and the expression of E-cadherin mRNA increased(P<0.01). Acetylalkannin can inhibit the proliferation, migration, and invasion of human melanoma A375 cells, and its mechanism of action may be related to the regulation of Wnt/β-catenin signaling pathway.
Humans
;
Matrix Metalloproteinase 2/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
beta Catenin/metabolism*
;
Vimentin/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
Cell Line, Tumor
;
Wnt Signaling Pathway
;
Cadherins/genetics*
;
Melanoma/genetics*
;
Cyclin D/metabolism*
;
Cell Proliferation
;
Boraginaceae/genetics*
;
RNA, Messenger
;
Cell Movement
2.Mechanism of total flavonoids of Ziziphora clinopodioides in improving atherosclerosis by regulating PI3K/Akt/mTOR pathway.
Xiao-Yu MA ; Hao-Ran ZHAO ; Hui-Lin QIAO ; You-Cheng ZENG ; Xuan-Ming ZHANG
China Journal of Chinese Materia Medica 2023;48(2):465-471
The present study observed the regulatory effect of total flavonoids of Ziziphora clinopodioides on autophagy and the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathways in ApoE~(-/-) mice and explored the mechanism of total flavonoids of Z. clinopodioides against atherosclerosis(AS). ApoE~(-/-) mice were fed on a high-fat diet for eight weeks to induce an AS model. The model mice were randomly divided into a model group, a positive control group, and low-, medium-and high-dose groups of total flavonoids of Z. clinopodioides, while C57BL/6J mice fed on a common diet were assigned to the blank group. The serum and aorta samples were collected after intragastric administration for 12 weeks, and the serum levels of total cholesterol(TC), triglyceride(TG), low density lipoprotein-cholesterol(LDL-C), and high density lipoprotein-cholesterol(HDL-C) were detected by an automatic biochemical analyzer. The serum expression levels of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), matrix metalloproteinase-2(MMP-2), and matrix metalloprotei-nase-9(MMP-9) were detected by enzyme-linked immunosorbent assay(ELISA). Oil red O staining was used to observe the aortic plaque area in mice. Hematoxylin-eosin(HE) staining was used to observe the aortic plaque and pathological changes in mice. The expression of P62 and LC3 in the aorta was detected by the immunofluorescence method. The protein expression of LC3Ⅱ/Ⅰ, Beclin-1, P62, p-PI3K, p-Akt, and p-mTOR in the aorta of mice was detected by Western blot. The results showed that compared with the blank group, the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2 and MMP-9 in the model group were significantly increased(P<0.01 or P<0.05), the content of HDL-C was decreased(P<0.05), intra-aortic plaque area was enlarged(P<0.01), the expression of LC3 in the aorta was significantly down-regulated, P62 expression was up-regulated(P<0.01 or P<0.05), the expressions of LC3Ⅱ/Ⅰ and Beclin-1 in the aortic lysate were significantly down-regulated, and the expressions of p-PI3K, p-Akt, p-mTOR and P62 were significantly increased(P<0.01). The medium-and high-dose groups of total flavonoids of Z. clinopodioides could reduce the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2, and MMP-9 in AS model mice(P<0.01 or P<0.05), and increase the content of HDL-C(P<0.01 or P<0.05). The aortic plaque area of mice after middle and high doses of total flavonoids of Z. clinopodioides was significantly reduced(P<0.01), the content of foam cells decrease, and the narrowing of the lumen decreased. The total flavonoids of Z. clinopodioides significantly increased the expression of LC3 in the aorta and the expression of LC3Ⅱ/Ⅰ and Beclin-1 in the lysate, and decreased the expression of P62 in the aorta and the expression of p-PI3K, p-Akt, p-mTOR and P62 in the lysate(P<0.01 or P<0.05). The results showed that the total flavonoids of Z. clinopodioides could improve the content of blood lipids and inflammatory factors, and reduce the generation of foam cells and plaques in aortic tissue, and the mechanism may be related to the regulation of PI3K/Akt/mTOR signaling pathway.
Animals
;
Mice
;
Apolipoproteins E
;
Atherosclerosis/genetics*
;
Beclin-1
;
Cholesterol, LDL
;
Intercellular Adhesion Molecule-1
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Plaque, Atherosclerotic
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/genetics*
;
Vascular Cell Adhesion Molecule-1/genetics*
3.Apolipoprotein E enhances migration of endometrial cancer cells byactivating the ERK/MMP9 signaling pathway.
Journal of Southern Medical University 2023;43(2):232-241
OBJECTIVE:
To study the role of apolipoprotein E (APOE) in regulating endometrial cancer metastasis and explore the signaling pathway in the regulatory mechanism.
METHODS:
Human endometrial cancer cell line HEC-1B was transfected with a control siRNA (siCtrl) or a specific siRNA targeting APOE (siAPOE) or with either pEGFP-N1 plasmid or an APOEoverexpressing plasmid. The changes in migration, proliferation, apoptosis and cell cycle of the transfected cells were examined using wound healing assay, Transwell migration assay, MTT assay, flow cytometry, and Hoechst staining. The activity of the ERK/MMP9 signaling pathway in the transfected cells was assessed using RT-qPCR and Western blotting. The expression level of APOE in clinical specimens of endometrial cancer tissues were detected using immunohistochemistry and its correlation with differentiation of endometrial cancer tissues was analyzed.
RESULTS:
Wound healing assay and Transwell migration assay showed that compared with those in siCtrl group, HEC-1B cells transfected with siAPOE showed significantly reduced migration ability (P < 0.05), whereas APOE overexpression significantly promoted the migration of the cells (P < 0.05). Neither APOE knockdown nor overexpression produced significant effects on HEC-1B cell proliferation as shown by MTT assay and flow cytometry. Hoechst staining revealed that transfection with siAPOE did not significantly affect apoptosis of HEC-1B cells. APOE knockdown obviously reduced and APOE overexpression enhanced ERK phosphorylation and MMP9 expression in HEC-1B cells (P < 0.05). Treatment with U0126 partially reversed the effects of APOE overexpression on ERK phosphorylation, migration and MMP9 expression in HEC-1B cells (P < 0.05). APOE is highly expressed in clinical samples of endometrial cancer tissues as compared with the adjacent tissues.
CONCLUSION
APOE is highly expressed in endometrial cancer tissues to promote cancer cell migration by enhancing ERK phosphorylation and MMP9 expression.
Female
;
Humans
;
Matrix Metalloproteinase 9/metabolism*
;
Cell Line, Tumor
;
Signal Transduction
;
Endometrial Neoplasms/genetics*
;
Cell Proliferation
;
Apoptosis
;
Cell Movement
;
RNA, Small Interfering
;
Apolipoproteins E
;
Apolipoproteins/pharmacology*
4.Neutrophil extracellular traps activates focal adhesion kinase by upregulating MMP9 expression to promote proliferation and migration of mouse colorectal cancer cells.
Yi HE ; Songlin HOU ; Changyuan MEMG
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):416-422
Objective To investigate how the neutrophil extracellular traps (NETs) affect the proliferation and migration of mouse MC38 colorectal cancer cells and its mechanism. Methods Spleen neutrophils were extracted in mouse, followed by collection of NETs after ionomycin stimulation in vitro. The proliferation of MC38 cell was detected by CCK-8 assay, and migration ability were detected by TranswellTM and cell scratch assay, after co-incubation with MC38 cells. The mRNA expression of cellular matrix metalloproteinase 2 (MMP2) and MMP9 were detected by real-time fluorescence quantitative PCR, and the expression of MMP2, MMP9 and focal adhesion kinase (FAK), phosphorylated FAK protein were detected by Western blot. After silencing MMP9 using small interfering RNA (siRNA), the effect of NETs on the proliferation and migration ability of MC38 cells and the altered expression of related molecules were examined by previous approach. Results NETs promoted the proliferation and migration of MC38 cells and up-regulated the MMP9 expression and FAK phosphorylation. Silencing MMP9 inhibited the promotion of MC38 proliferation and migration by NETs and suppressed FAK phosphorylation. Conclusion NETs up-regulates MMP9 expression in MC38 cells, activates FAK signaling pathway and promotes tumor cell proliferation and migration.
Animals
;
Mice
;
Focal Adhesion Protein-Tyrosine Kinases/metabolism*
;
Matrix Metalloproteinase 2/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
Extracellular Traps/metabolism*
;
Cell Movement
;
Cell Proliferation
;
RNA, Small Interfering/genetics*
;
Colorectal Neoplasms/genetics*
;
Cell Line, Tumor
5.Shexiang Tongxin Dropping Pill Allieviates Heart Failure via Extracellula Matrix-Receptor Interaction Pathways Based on RNA-Seq Transcriptomics and Experimental Studies.
Ya-Fang TAN ; Yu-Han FU ; Min-Zhou ZHANG
Chinese journal of integrative medicine 2023;29(7):600-607
OBJECTIVE:
To investigate the protective mechanisms of Chinese medicine Shexiang Tongxin Dropping Pills (STDP) on heart failure (HF).
METHODS:
Isoproterenol (ISO)-induced HF rat model and angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast (CFs) model were used in the present study. HF rats were treated with and without STDP (3 g/kg). RNA-seq was performed to identify differentially expressed genes (DEGs). Cardiac function was evaluated by echocardiography. Hematoxylin and eosin and Masson's stainings were taken to assess cardiac fibrosis. The levels of collagen I (Col I) and collagen III (Col III) were detected by immunohistochemical staining. CCK8 kit and transwell assay were implemented to test the CFs' proliferative and migratory activity, respectively. The protein expressions of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), MMP-9, Col I, and Col III were detected by Western blotting.
RESULTS:
The results of RNA-seq analysis showed that STDP exerted its pharmacological effects on HF via multiple signaling pathways, such as the extracellular matrix (ECM)-receptor interaction, cell cycle, and B cell receptor interaction. Results from in vivo experiments demonstrated that STDP treatment reversed declines in cardiac function, inhibiting myocardial fibrosis, and reversing increases in Col I and Col III expression levels in the hearts of HF rats. Moreover, STDP (6, 9 mg/mL) inhibited the proliferation and migration of CFs exposed to Ang II in vitro (P<0.05). The activation of collagen synthesis and myofibroblast generation were markedly suppressed by STDP, also the synthesis of MMP-2 and MMP-9, as well as ECM components Col I, Col III, and α-SMA were decreased in Ang II-induced neonatal rats' CFs.
CONCLUSIONS
STDP had anti-fibrotic effects in HF, which might be caused by the modulation of ECM-receptor interaction pathways. Through the management of cardiac fibrosis, STDP may be a compelling candidate for improving prognosis of HF.
Rats
;
Animals
;
Matrix Metalloproteinase 2/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
RNA-Seq
;
Transcriptome/genetics*
;
Heart Failure/drug therapy*
;
Collagen
;
Collagen Type I/metabolism*
;
Fibrosis
;
Myocardium/pathology*
6.Overwork Affects Extracellular Matrix of Arterial Vessel Wall in Rats.
Su-Heng CHEN ; Lu GAN ; Miao ZHUANG ; Xiao-Xiao ZHANG ; Hong GUO ; Rong-Rong HUANG ; Yu-Lan LI
Acta Academiae Medicinae Sinicae 2022;44(2):262-269
Objective To explore the effect of overwork (OW) on extracellular matrix of arterial vessel wall in rats. Methods Random number grouping method was employed to assign 18 Sprague-Dawley rats into three groups(n=6):the control group(no special treatment),group OW(forced swimming twice a day for 15 days),and sleep deficiency(SD)+OW group(in addition to forced swimming twice a day,the rats were put on the platforms in water to limit sleep for 15 days).On the 16th day,the abdominal aorta and common carotid artery were collected after blood sampling from heart under deep anesthesia.A part of the abdominal aorta sample was taken for Masson staining of collagen fiber,and Verhoeff-Van Gieson staining was carried out for the elastic fiber of common carotid artery.Image J was employed for the quantitative analysis of collagen fiber and elastic fiber content.The expression of collagen 1(Col-1) protein was quantified by immunohistochemistry and the ultrastructure of vascular matrix was examined by transmission electron microscopy.The other part of the abdominal aorta sample was used to determine the mRNA levels of matrix metalloproteinase(MMP)-1,MMP-2,MMP-9,tissue inhibitor of metalloproteinases-1(TIMP-1),and Col-1 by quantitative real-time polymerase chain reaction. Results Compared with that in control group,the content of collagen fiber in groups OW and SD+OW had no significant change(all P>0.05);the content of elastic fiber in groups OW and SD+OW decreased(all P<0.001) and had no significant difference between each other(P>0.05).The vascular vessel wall of group OW showed slight fiber breakage,while that of group SD+OW presented wormhole-like or spongy fiber fragmentation.The mRNA levels of MMP-1 and MMP-2 in groups OW and SD+OW had no significant difference between each other(P>0.05) but were higher than that in control group(all P<0.001).The mRNA levels of MMP-9 and TIMP-1 had no significant difference among the three groups(all P>0.05).Groups OW and SD+OW had lower mRNA level(all P<0.001) and protein level(all P<0.001) of Col-1 than control group,while the mRNA and protein levels of Col-1 had no significant difference between groups OW and SD+OW(P>0.05). Conclusion OW can reduce the content of Col-1 and elastic fibers in the extracellular matrix of arterial vessels,destroy the elastic lamina of vascular wall,up-regulate the expression of MMP-1 and MMP-2,thereby injuring arterial vessels.
Animals
;
Collagen Type I
;
Extracellular Matrix/metabolism*
;
Matrix Metalloproteinase 1/metabolism*
;
Matrix Metalloproteinase 2/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
RNA, Messenger/genetics*
;
Rats
;
Rats, Sprague-Dawley
;
Tissue Inhibitor of Metalloproteinase-1/metabolism*
7.TSTA3 gene promotes esophageal cancer invasion through MAPK-ERK pathway and downstream MMP2/9.
En Wei XU ; Jie YANG ; Ling ZHANG
Chinese Journal of Pathology 2022;51(1):50-52
Carbohydrate Epimerases/metabolism*
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Esophageal Neoplasms/genetics*
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Ketone Oxidoreductases/metabolism*
;
MAP Kinase Signaling System
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9
;
Neoplasm Invasiveness/genetics*
8.hsa_circ_0000231 affects the progression of tongue squamous cell carcinoma by activating Wnt/β-catenin signaling pathway.
Qing Wen CHEN ; Dong Qin WANG ; Bi Xiao DING ; Ming Ming TANG ; Xiao Guang LI ; Jie Yu ZHOU ; Ke XU ; Zheng Rong FANG ; Liang HAN ; Hao WU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(10):1230-1239
Objective: To explore the action mechanism of hsa_circ_0000231 in the occurrence and development of tongue squamous cell carcinoma (TSCC). Methods: Tissue samples of 60 TSCC patients were examined. The patients, including 32 males and 28 females, aged from 36 to 84 years old, underwent surgery in the Affiliated Hospital of Nantong University and Affiliated Tumor Hospital of Nantong University from December 2014 to December 2017. Saliva samples were obtained from healthy volunteers (5 males and 5 females, aged from 40 to 75 years old) and 10 TSCC patients. The TSCC cell lines (CAL-27, Tca-8113 and HN-4) were used. The expression levels of hsa_circ_0000231 in 60 pairs of freshly matched TSCC and para-carcinoma tissue samples, 10 pairs of saliva samples and 3 TSCC cell lines were detected by quantitative real-time polymerase chain reaction (qRT-PCR). hsa_circ_0000231 gene interference and lentiviral transfection were constructed, hsa_circ_0000231 in TSCC cell lines CAL-27 and Tca-8113 was knocked down, and the expressions of hsa_circ_0000231 in hsa_circ_0000231 interference group (sh-circ) and no-load lentivirus group (negative control) were tested with qRT-PCR. Cells with the highest knock-down efficiency were selected for CCK-8 test, colony formation assay, transwell invasion assay and scratch assay. The expressions of EMT-related proteins including E-cadherin, snail protein, N-cadherin and vimentin and proteins related to Wnt/β-catenin signaling pathway including β-catenin, C-myc, Bcl-2, MMP-9 and Cyclin D1 were measured by western blot. After TSCC cells in the interference group were co-cultured with Wnt/β-catenin pathway activator LiCl, the expressions of above proteins were re-measured by western blot. TSCC cells in interference group and control group were subcutaneously injected into nude mice to compare the effect of hsa_circ_0000231 knockdown on the growths of the tumors grafted subcutaneously in the nude mice. Statistical analysis software 25.0 was used for data analysis, and t-test or chi-square test was used for comparison between groups. Results: hsa_circ_0000231 was highly expressed in the tissue and saliva samples of TSCC patients and cell lines CAL-27, Tca-8113 and HN-4, but lowly expressed in paired para-carcinoma tissues, saliva samples of healthy people and normal human oral keratinocytes (all P<0.05). Log-rank univariate analysis showed that hsa_circ_0000231 expression level, tumor differentiation degree and T stage were related to the survival of TSCC patients (all P<0.05). Multivariate Cox risk regression model analysis suggested that hsa_circ_0000231 expression level (χ2=5.77,P=0.016) and T stage (χ2=5.27,P=0.029) were independent factors for the poor prognosis of TSCC patients. Western blot showed the expressions of snail protein, N-cadherin and vimentin were down-regulated, but E-cadherin was up-regulated in interference group compared with control group. In interference group, the expressions of β-catenin, C-myc, Bcl-2, MMP-9 and CyclinD1 were down-regulated, which were reversed after TSCC cells were co-cultured with LiCl. The knockdown of hsa_circ_0000231 reduced the proliferation, invasion and metastasis abilities of CAL-27 and Tca-8113 cells, which were reversed after TSCC cells were co-cultured with LiCl. The growth rate and volume of the tumors grafted subcutaneously in interference group using LiCl were greater than those in negative control group. Conclusion: hsa_circ_0000231 is an independent prognostic factor of TSCC. Highly expressed hsa_circ_0000231 can promote the proliferation, invasion and metastasis of TSCC cells.
Male
;
Animals
;
Mice
;
Female
;
Humans
;
Adult
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Tongue Neoplasms
;
Wnt Signaling Pathway/genetics*
;
Carcinoma, Squamous Cell/genetics*
;
beta Catenin/metabolism*
;
Mice, Nude
;
Vimentin
;
Matrix Metalloproteinase 9/metabolism*
;
RNA, Circular
;
Gene Expression Regulation, Neoplastic
;
Cell Proliferation/genetics*
;
Cadherins/genetics*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Tongue
9.Expression, purification, and characterization of cell-permeable fusion antioxidant enzyme sensitive to matrix metalloproteinases-2/9.
Huocong HE ; Lixiang LIN ; Lingling LI ; Lunqiao WU ; Haiying LIN ; Jianru PAN
Chinese Journal of Biotechnology 2022;38(9):3515-3527
Antioxidant enzymes fused with cell-penetrating peptides could enter cells and protect cells from irradiation damage. However, the unselective transmembrane ability of cell-penetrating peptide may also bring antioxidant enzymes into tumor cells, thus protecting tumor cells and consequently reducing the efficacy of radiotherapy. There are active matrix metalloproteinase (MMP)-2 or MMP-9 in most tumor cellular microenvironments. Therefore, a fusion protein containing an MMP-2/9 cleavable substrate peptide X, a cell-penetrating peptide R9, a glutathione S-transferase (GST), and a human Cu, Zn superoxide dismutase (SOD1), was designed and named GST-SOD1-X-R9. In the tumor microenvironment, GST-SOD1-X-R9 would lose its cell-penetrating peptide and could not enter tumor cells due to the cleavage of substrate X by active MMP-2/9, thereby achieving selected entering normal cells. The complete nucleotide sequence of SOD1-X-R9 was synthesized and inserted into the prokaryotic expression vector pGEX-4T-1. The pGEX4T-1-SOD1-X-R9 recombinant plasmid was obtained, and soluble expression of the fusion protein was achieved. GST-SOD1-X-R9 was purified by ammonium sulfate precipitation and GST affinity chromatography. The molecular weight of the fusion protein was approximately 47 kDa, consistent with the theoretical value. The SOD and GST activities were 2 954 U/mg and 328 U/mg, respectively. Stability test suggested that almost no change in either SOD activity or GST activity of GST-SOD1-X-R9 was observed under physiological conditions. The fusion protein could be partially digested by collagenase Ⅳ in solution. Subsequently, the effect of MMP-2/9 activity on transmembrane ability of the fusion protein was tested using 2D and 3D cultured HepG2 cells. Little extracellular MMP-2 activity of HepG2 cells was observed under 2D culture condition. While under the 3D culture model, the size and the MMP-2 activity of the HepG2 tumor spheroid increased daily. GST-SOD1-R9 proteins showed the same transmembrane efficiency in 2D cultured HepG2 cells, but the transmembrane efficiency of GST-SOD1-X-R9 in 3D cultured HepG2 spheres was reduced remarkably. This study provided a basis for further investigating the selectively protective effect of GST-SOD1-X-R9 against oxidative damage in normal cells.
Ammonium Sulfate
;
Antioxidants
;
Cell-Penetrating Peptides/pharmacology*
;
Endopeptidases
;
Glutathione Transferase/metabolism*
;
Humans
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Recombinant Fusion Proteins
;
Recombinant Proteins
;
Superoxide Dismutase/metabolism*
;
Superoxide Dismutase-1
10.Inhibitory effects of petasin on human colon carcinoma cells mediated by inactivation of Akt/mTOR pathway.
Xi LYU ; Ai-Lin SONG ; Yin-Liang BAI ; Xiao-Dong XU ; Dong-Qiang HE ; You-Cheng ZHANG
Chinese Medical Journal 2019;132(9):1071-1078
BACKGROUND:
Colorectal cancer is the third most common cancer worldwide and still lack of effective therapy so far. Petasin, a natural product found in plants of the genus Petasites, has been reported to possess anticancer activity. The present study aimed to investigate the anticolon cancer activity of petasin both in vitro and in vivo. The molecular mechanism of petasin was also further explored.
METHODS:
Caco-2, LoVo, SW-620, and HT-29 cell lines were used to detect the inhibitory effect of petasin on colon cancer proliferation. Cell viability was determined using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Cell apoptosis was analyzed by flow cytometry. Hoechst 33258 staining was used to visualize morphological changes. Cell migration was assessed using a wound-healing migration assay, and cell invasion was investigated using Transwell chambers. Western blotting assays were employed to evaluate the expression levels of proteins in the protein kinase B/mammalian target of rapamycin (Akt/mTOR) signaling pathway. Finally, in vivo activity of petasin was evaluated using the SW-620 subcutaneous tumor model established in Balb/c nude mice. Twelve rats were randomly divided into control group and 10 mg/kg petasin group. The tumor volume was calculated every 7 days for 28 days. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was performed to assess the apoptotic effect of petasin. Differences between two groups were assessed by analysis of independent-sample t tests.
RESULTS:
Petasin significantly inhibited the proliferation of human colon carcinoma cell lines, induced apoptosis, and suppressed migration and invasion in SW-620 cells. Western blotting results showed that petasin decreased the phosphorylation of Akt (1.01 ± 0.16 vs. 0.74 ± 0.06, P = 0.042), mTOR (0.71 ± 0.12 vs. 0.32 ± 0.11, P = 0.013), and P70S6K (1.23 ± 0.21 vs. 0.85 ± 0.14, P = 0.008), elevated the expression of caspase-3 (0.41 ± 0.09 vs. 0.74 ± 0.12, P = 0.018) and caspase-9 (1.10 ± 0.27 vs. 1.98 ± 0.22, P = 0.009), decreased the Bcl-2 protein (2.75 ± 0.47 vs. 1.51 ± 0.36, P = 0.008), downregulated the expression of matrix metalloproteinase (MMP)-3 (1.51 ± 0.31 vs. 0.82 ± 0.11, P = 0.021) and MMP-9 (1.56 ± 0.32 vs. 0.94 ± 0.15, P = 0.039) in SW-620 cell. In vivo, 10 mg/kg petasin inhibited tumor growth in Balb/c nude mice (924.18 ± 101.23 vs. 577.67 ± 75.12 mm at day 28, P = 0.001) and induced apoptosis (3.6 ± 0.7% vs. 36.0 ± 4.9%, P = 0.001) in tumor tissues.
CONCLUSIONS
Petasin inhibits the proliferation of colon cancer SW-620 cells via inactivating the Akt/mTOR pathway. Our findings suggest petasin as a potential candidate for colon cancer therapy.
Animals
;
Antineoplastic Agents
;
therapeutic use
;
Apoptosis
;
drug effects
;
Caco-2 Cells
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
HT29 Cells
;
Humans
;
In Situ Nick-End Labeling
;
Matrix Metalloproteinase 3
;
metabolism
;
Matrix Metalloproteinase 9
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Mice, Nude
;
Phosphorylation
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
;
Sesquiterpenes
;
therapeutic use
;
Signal Transduction
;
drug effects
;
TOR Serine-Threonine Kinases
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail