1.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
2.Standard for the management of hyperkalemia—whole-process management mode of multi- department cooperation
Zhiming YE ; Jianfang CAI ; Wei CHEN ; Hong CHENG ; Qiang HE ; Rongshan LI ; Xiangmin LI ; Xinxue LIAO ; Zhiguo MAO ; Huijuan MAO ; Ning TAN ; Gang XU ; Hong ZHAN ; Hao ZHANG ; Jian ZHANG ; Xueqing YU
Chinese Journal of Nephrology 2024;40(3):245-254
Hyperkalemia is one of the common ion metabolism disorders in clinical practice. Hyperkalemia is defined as serum potassium higher than 5.0 mmol/L according to the guidelines at home and abroad. Acute severe hyperkalemia can cause serious consequences, such as flaccid paralysis, fatal arrhythmia, and even cardiac arrest. The use of renin-angiotensin- aldosterone system inhibitors, β-blockers and diuretics, low-sodium and high-potassium diets, and the presence of related comorbidities increase the occurrence of hyperkalemia. Hyperkalemia risk exist in all clinical departments, but there is a lack of a standardization in the management of multi- department cooperation in hospital. Therefore, a number of domestic nephrology and cardiology department experts have discussed a management model for multi-department cooperation in hyperkalemia, formulating the management standard on hospital evaluation, early warning, diagnosis and treatment, and process. This can promote each department to more effectively participate in nosocomial hyperkalemia diagnosis and treatment, as well as the long-term management of chronic hyperkalemia, improving the quality of hyperkalemia management in hospital.
3.Multiple Liver Metastases in Malignant Insulinoma: A Case Report
Jinhao LIAO ; Yuting GAO ; Xiang WANG ; Zhiwei WANG ; Qiang XU ; Yuxing ZHAO ; Yue CHI ; Jiangfeng MAO ; Hongbo YANG
Medical Journal of Peking Union Medical College Hospital 2024;15(4):968-972
Malignant insulinoma is a kind of rare and challenging neuroendocrine tumor. It is often accompanied by distant metastasis, among which liver metastasis is most common, and the prognosis is often non-promising. In this paper, we report a case of multiple liver metastases from malignant insulinoma. The patient, a 70-year-old male, was admitted to the hospital due to "episodic consciousness disorder for more than four months." Blood glucose monitoring revealed recurrent hypoglycemia in the early morning, after meals, and at night. Pancreatic perfusion CT and dynamic enhanced MRI of the liver revealed a mass in the uncinate process of the pancreatic head and multiple liver metastases. Percutaneous liver biopsy confirmed the diagnosis of insulinoma. After multidisciplinary discussions, hepatic artery embolization and radiofrequency ablation were performed in stages, in combination with everolimus treatment. Thereafter, the enhanced CT demonstrated that some liver metastases shrank. The patient had regular meals, and the blood sugar gradually increased and remained normal thereafter. This article discusses this case's clinical characteristics and multidisciplinary collaborative diagnosis and treatment, aiming to provide experience for the comprehensive clinical diagnosis and treatment of malignant insulinoma patients.
4.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
7.Design and construction of a large 5G mobile emergency resuscitation unit
Minfei YANG ; Qiang LI ; Shanxiang XU ; Weidi SHEN ; Aina WU ; Fangmin GE ; Jungen ZHANG ; Ming ZHOU ; Jianping YE ; Mao ZHANG
Chinese Journal of Emergency Medicine 2023;32(12):1623-1627
Objective:To design a large-scale mobile emergency resuscitation unit based on 5G communication technology to improve the efficiency of prehospital transportation and treatment.Methods:The study was conducted in Hangzhou from November 2022 to September 2023. It's sorted out the application scenario requirements for prehospital first aid, transfer, and prehospital-intrahospital emergency linkage in carrying out the program design, single technology testing, onboard debugging, and integration debugging phases sequentially.Results:In September 2023, a large-scale 5G mobile emergency resuscitation unit was completed and delivered. The unit was converted from an electric bus and consists of five parts: (1) Vehicle appearance: the vehicle is 12.9 meters long, 2.3 meters wide and 2.6 meters high, with a single mileage of 200 kilometers; (2) The overall internal structure: the vehicle has one resuscitation bed and two stretcher positions. Additionally, there is a comprehensive operating table located at the front of the vehicle. The middle of the vehicle is equipped with a central digital control screen. (3) First aid materials and instruments: the vehicle's materials are modularly configured in accordance with the resuscitation, guardianship, surgery, inspection and testing, Communication modular configuration, equipped with a defibrillation monitor, transfer ventilator, extracorporeal membrane lung oxygenation and other critical care first aid and electrocardiogram, digital radiography, blood gas analyzer, chest pain 5 monitors and other inspection and testing equipment; (4) Vehicle communication and information systems: equipped with high-definition remote video interactive system, telemedicine terminal DP300 integrated system, a real-time panoramic experience system and centralized guardianship system; (5) Vehicle disinfection: a plasma disinfector installed on the top of the car can meet the hospital disinfection hygiene standardsⅡ class environmental management requirements.Conclusions:Incorporating 5G communication technology, the large-scale mobile emergency resuscitation unit is equipped with various advanced treatment equipment and remote consultation systems. It can accommodate the resuscitation needs of the most critically ill patients, offering substantial support for public emergency rescues. Further exploration of its potential is merited.
8.Eligibility of C-BIOPRED severe asthma cohort for type-2 biologic therapies.
Zhenan DENG ; Meiling JIN ; Changxing OU ; Wei JIANG ; Jianping ZHAO ; Xiaoxia LIU ; Shenghua SUN ; Huaping TANG ; Bei HE ; Shaoxi CAI ; Ping CHEN ; Penghui WU ; Yujing LIU ; Jian KANG ; Yunhui ZHANG ; Mao HUANG ; Jinfu XU ; Kewu HUANG ; Qiang LI ; Xiangyan ZHANG ; Xiuhua FU ; Changzheng WANG ; Huahao SHEN ; Lei ZHU ; Guochao SHI ; Zhongmin QIU ; Zhongguang WEN ; Xiaoyang WEI ; Wei GU ; Chunhua WEI ; Guangfa WANG ; Ping CHEN ; Lixin XIE ; Jiangtao LIN ; Yuling TANG ; Zhihai HAN ; Kian Fan CHUNG ; Qingling ZHANG ; Nanshan ZHONG
Chinese Medical Journal 2023;136(2):230-232
9.A case of low-grade fibromyxoid sarcoma of the temporal bone.
Ming Yang MAO ; Guo Dong FENG ; Yu CHEN ; Xiao Hua SHI ; Xu TIAN ; Tong SU ; Hui Ying SUN ; Zhen Tan XU ; Wen Sheng REN ; Zhu Hua ZHANG ; Zhi Qiang GAO ; Zheng Yu JIN
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(1):64-67
10.Safety of delayed vaccination with the national immunization program vaccines in children aged 0-6 years from 2019 to 2021 in Xuhui District, Shanghai City in China.
Qiang Song WU ; Shu Qian MAO ; Yan XU ; Rui Jie GONG ; Qi ZHOU ; Min LIU ; Jing Yi LIU ; Dan Hong ZHU ; Xiang GUO
Chinese Journal of Preventive Medicine 2023;57(7):983-991
Objective: To understand the incidence of delayed vaccination with the national immunization program vaccines among children aged 0-6 years in Xuhui District, Shanghai, and to evaluate the safety of delayed vaccination. Methods: A stratified random sampling was used to obtain six vaccination clinics in Xuhui District, Shanghai. The vaccination records of children 0-6 years from these six vaccination clinics were collected from the Shanghai Immunization Program Information Management System. Adverse events following immunization (AEFI) data were collected from the China Information System for Disease Control and Prevention. Descriptive epidemiology was used to analyze the data. Children were divided into the timely vaccination group and delayed vaccination group according whether they were delayed in vaccination (received one month or more after the recommended age among children aged ≤1 year; received three months or more after the recommended age among children aged >1 year). The safety of four vaccination methods-individual vaccination, simultaneous vaccination, routine vaccination and combined vaccination-were further compared. Differences between groups were compared using chi-square test. Results: From 2019 to 2021, six vaccination clinics in Xuhui District administered 124 031 doses of the national immunization program vaccines among children aged 0-6 years, and delayed vaccinations accounted for 25.99% (32 234/124 031) of these doses. In 2020, the delayed vaccination rate during the first-level COVID-19 public health emergency response period in Shanghai was significantly higher than that in the same period in 2019 (34.70% vs. 24.19%, χ2=136.23, P<0.05). The delayed vaccination rate during the COVID-19 vaccination campaign in 2021 was significantly higher than that in the same period in 2019 (25.27% vs. 22.55%, χ2=82.80, P<0.05). From 2019 to 2021, a total of 475 cases of AEFI were reported in six vaccination clinics, with a reported incidence of 382.97 per 100 000 doses, including 421 cases of common adverse reaction (88.63%, 339.43 per 100 000 doses), 51 cases of rare adverse reaction (10.74%, 41.12 per 100 000 doses) and 3 cases of coincidences (0.63%, 2.42 per 100 000 doses). The reported incidence of AEFI among delayed vaccinations was significantly lower than that among timely vaccinations (291.62 per 100 000 doses vs. 415.05 per 100 000 doses). The incidence of AEFI for the four delayed vaccination methods (individual vaccination, simultaneous vaccination, routine vaccination and combined vaccination) was lower than that for timely vaccination. There were significant differences between the groups except for the routine vaccination group (χ2=9.82, P<0.05; χ2=5.46, P<0.05; χ2=2.97, P>0.05; χ2=11.89, P<0.05). Conclusions: In Xuhui District of Shanghai, 25.99% of doses of the national immunization program vaccines administered to children 0-6 years were delayed. Delayed vaccination does not increase the risk of AEFI compared with timely vaccination.

Result Analysis
Print
Save
E-mail