1.Immunomodulatory effect of short-chain fatty acids in hepatic encephalopathy and its potential diagnostic value
Weiyu CHEN ; Dewen MAO ; Han WANG ; Yang DU ; Wenqian FENG ; Lei FU ; Chun YAO
Journal of Clinical Hepatology 2025;41(5):954-962
Hepatic encephalopathy (HE) is a common complication of severe liver disease in the end stage, and it is urgently needed to improve the rate of effective treatment and clarify the pathogenesis of HE. The liver is a crucial hub for immune regulation, and disruption of immune homeostasis is a key factor in the pathological mechanisms of HE. As the main metabolites of intestinal flora, short-chain fatty acids (SCFAs) play a vital role in the biological processes of both innate and adaptive immunity and can regulate the proliferation and differentiation of immune cells maintain the homeostasis of intestinal microenvironment and the integrity of barrier function. Studies have shown that SCFAs participate in bidirectional and dynamic interactions with the liver-gut-brain axis through immunomodulatory pathways, thereby playing an important role in the diagnosis, treatment, and prognostic evaluation of HE. Starting from the immunoregulatory effect of SCFAs, this article summarizes and analyzes the crosstalk relationship between SCFAs and the liver-gut-brain axis and the significance of SCFAs in the diagnosis and treatment of HE, in order to provide new ideas for optimizing clinical prevention and treatment strategies.
2.Mechanisms and Molecular Networks of Hypoxia-regulated Tumor Cell Dormancy
Mao ZHAO ; Jin-Qiu FENG ; Ze-Qi GAO ; Ping WANG ; Jia FU
Progress in Biochemistry and Biophysics 2025;52(9):2267-2279
Dormant tumor cells constitute a population of cancer cells that reside in a non-proliferative or low-proliferative state, typically arrested in the G0/G1 phase and exhibiting minimal mitotic activity. These cells are commonly observed across multiple cancer types, including breast, lung, and ovarian cancers, and represent a central cellular component of minimal residual disease (MRD) following surgical resection of the primary tumor. Dormant cells are closely associated with long-term clinical latency and late-stage relapse. Due to their quiescent nature, dormant cells are intrinsically resistant to conventional therapies—such as chemotherapy and radiotherapy—that preferentially target rapidly dividing cells. In addition, they display enhanced anti-apoptotic capacity and immune evasion, rendering them particularly difficult to eradicate. More critically, in response to microenvironmental changes or activation of specific signaling pathways, dormant cells can re-enter the cell cycle and initiate metastatic outgrowth or tumor recurrence. This ability to escape dormancy underscores their clinical threat and positions their effective detection and elimination as a major challenge in contemporary cancer treatment. Hypoxia, a hallmark of the solid tumor microenvironment, has been widely recognized as a potent inducer of tumor cell dormancy. However, the molecular mechanisms by which tumor cells sense and respond to hypoxic stress—initiating the transition into dormancy—remain poorly defined. In particular, the lack of a systems-level understanding of the dynamic and multifactorial regulatory landscape has impeded the identification of actionable targets and constrained the development of effective therapeutic strategies. Accumulating evidence indicates that hypoxia-induced dormancy tumor cells are accompanied by a suite of adaptive phenotypes, including cell cycle arrest, global suppression of protein synthesis, metabolic reprogramming, autophagy activation, resistance to apoptosis, immune evasion, and therapy tolerance. These changes are orchestrated by multiple converging signaling pathways—such as PI3K-AKT-mTOR, Ras-Raf-MEK-ERK, and AMPK—that together constitute a highly dynamic and interconnected regulatory network. While individual pathways have been studied in depth, most investigations remain reductionist and fail to capture the temporal progression and network-level coordination underlying dormancy transitions. Systems biology offers a powerful framework to address this complexity. By integrating high-throughput multi-omics data—such as transcriptomics and proteomics—researchers can reconstruct global regulatory networks encompassing the key signaling axes involved in dormancy regulation. These networks facilitate the identification of core regulatory modules and elucidate functional interactions among key effectors. When combined with dynamic modeling approaches—such as ordinary differential equations—these frameworks enable the simulation of temporal behaviors of critical signaling nodes, including phosphorylated AMPK (p-AMPK), phosphorylated S6 (p-S6), and the p38/ERK activity ratio, providing insights into how their dynamic changes govern transitions between proliferation and dormancy. Beyond mapping trajectories from proliferation to dormancy and from shallow to deep dormancy, such dynamic regulatory models support topological analyses to identify central hubs and molecular switches. Key factors—such as NR2F1, mTORC1, ULK1, HIF-1α, and DYRK1A—have emerged as pivotal nodes within these networks and represent promising therapeutic targets. Constructing an integrative, systems-level regulatory framework—anchored in multi-pathway coordination, omics-layer integration, and dynamic modeling—is thus essential for decoding the architecture and progression of tumor dormancy. Such a framework not only advances mechanistic understanding but also lays the foundation for precision therapies targeting dormant tumor cells during the MRD phase, addressing a critical unmet need in cancer management.
3.Mechanism of "olfactory three needles" in regulating microglia and promoting remyelination in vascular dementia rats.
Le LI ; Qiang WANG ; Junyang LIU ; Weijia ZHAO ; Jiawei ZENG ; Bingbing ZHANG ; Ruirui MAO ; Weixing FENG ; Jie LI
Chinese Acupuncture & Moxibustion 2025;45(4):473-481
OBJECTIVE:
To observe the effects of "olfactory three needles" on cognition, learning and memory abilities, as well as hippocampal microglia (MG) phagocytic activity in vascular dementia (VD) rats, and explore the mechanisms of acupuncture in regulating MG activation and improving remyelination, so as to ameliorate VD.
METHODS:
Among 38 SD rats meeting experimental requirements, 9 rats were randomly assigned to a sham-operation group, and the remaining rats underwent permanent bilateral common carotid artery ligation to establish VD model. Eighteen successfully modeled rats were randomly divided into a model group and an electroacupuncture (EA) group, with 9 rats in each one. In the EA group, EA was performed at "olfactory three needles" ("Yintang" [GV24+] and bilateral "Yingxiang" [LI20]), at disperse-dense wave, the frequency of 2 Hz/15 Hz and the current intensity of 1 mA, for 15 min per intervention, once daily. One course was composed of 7 days, and 2 courses were required, with the interval of 2 days. The novel object recognition test was employed to assess the cognition of rats, and the Morris water maze was adopted to observe learning and memory abilities. Luxol fast blue (LFB) staining was performed to evaluate myelin sheath loss in the hippocampus, the Western blot was used to detect the protein expression of triggering receptor expressed on myeloid cells-2 (TREM2) and proteolipid protein (PLP) in the hippocampus; and the immunofluorescence staining was used to detect the positive expression of PLP, sex determining region Y-box 10 (SOX10), ionized calcium binding adaptor molecule 1 (Iba1)+ TREM2+ and Iba1+ lysosome-associated membrane protein 1 (LAMP1)+ in the hippocampus.
RESULTS:
Compared with the sham-operation group, the rats in the model group exhibited the prolonged escape latency on day 3 and 4 (P<0.05, P<0.01), the increase of the total distance traveling (P<0.01) and the decrease of the recognition index (RI) and platform crossing frequency (P<0.01). Compared with the model group, the rats in the EA group showed the shortened escape latency on day 3 and 4 (P<0.05), the decrease of total distance traveling (P<0.01) and the increase of RI and platform crossing frequency (P<0.05, P<0.01). When compared with the sham-operation group, the rats of the model group presented uneven staining, sparse arrangement of myelin sheath fibers, unclear contours, and prominent vacuole-like changes in the hippocampal CA1 region. When compared with the model group, the EA group showed more dense staining, the increase of myelin sheath fibers with more orderly alignment, and fewer vacuolar changes in the hippocampal CA1 region. Compared with the sham-operation group, the model group exhibited the increase of TREM2 protein expression and the decrease of PLP protein expression in the hippocampus (P<0.01), whereas the EA group showed the up-regulation of TREM2 and PLP protein expression when compared with the model group (P<0.01, P<0.05). The positive expression of the hippocampal PLP, SOX10, and Iba1+LAMP1+ in the model group was reduced in comparison with the sham-operation group (P<0.05, P<0.01), and the positive expression of Iba1+ TREM2+ was elevated (P<0.05). In the EA group, the positive expression of PLP, SOX10, Iba1+TREM2+, and Iba1+ LAMP1+ was higher compared with that in the model group (P<0.05, P<0.01).
CONCLUSION
"Olfactory three needles" can improve the learning and memory, and cognitive functions of VD rats, and its mechanism may be associated with the up-regulation of TREM2 and LAMP1 to adjust MG phagocytic activity and intracellular degradation, and promote remyelination.
Animals
;
Dementia, Vascular/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Microglia/metabolism*
;
Male
;
Acupuncture Therapy/instrumentation*
;
Acupuncture Points
;
Humans
;
Remyelination
;
Memory
;
Hippocampus/cytology*
;
Cognition
;
Electroacupuncture
;
Needles
4.Alzheimer's disease diagnosis among dementia patients via blood biomarker measurement based on the AT(N) system.
Tianyi WANG ; Li SHANG ; Chenhui MAO ; Longze SHA ; Liling DONG ; Caiyan LIU ; Dan LEI ; Jie LI ; Jie WANG ; Xinying HUANG ; Shanshan CHU ; Wei JIN ; Zhaohui ZHU ; Huimin SUI ; Bo HOU ; Feng FENG ; Bin PENG ; Liying CUI ; Jianyong WANG ; Qi XU ; Jing GAO
Chinese Medical Journal 2025;138(12):1505-1507
5.Targeted gene silencing in mouse testicular Sertoli and Leydig cells using adeno-associated virus vectors.
Jing PANG ; Mao-Xing XU ; Xiao-Yu WANG ; Xu FENG ; Yi-Man DUAN ; Xiao-Yan ZHENG ; Yu-Qian CHEN ; Wen YIN ; Ying LIU ; Ju-Xue LI
Asian Journal of Andrology 2025;27(5):627-637
Researchers commonly use cyclization recombination enzyme/locus of X-over P1 (Cre/loxP) technology-based conditional gene knockouts of model mice to investigate the functional roles of genes of interest in Sertoli and Leydig cells within the testis. However, the shortcomings of these genetic tools include high costs, lengthy experimental periods, and limited accessibility for researchers. Therefore, exploring alternative gene silencing techniques is of great practical value. In this study, we employed adeno-associated virus (AAV) as a vector for gene silencing in Sertoli and Leydig cells. Our findings demonstrated that AAV serotypes 1, 8, and 9 exhibited high infection efficiency in both types of testis cells. Importantly, we discovered that all three AAV serotypes exhibited exquisite specificity in targeting Sertoli cells via tubular injection while demonstrating remarkable selectivity in targeting Leydig cells via interstitial injection. We achieved cell-specific knockouts of the steroidogenic acute regulatory ( Star ) and luteinizing hormone/human chorionic gonadotropin receptor (Lhcgr) genes in Leydig cells, but not in Sertoli cells, using AAV9-single guide RNA (sgRNA)-mediated gene editing in Rosa26-LSL-Cas9 mice. Knockdown of androgen receptor ( Ar ) gene expression in Sertoli cells of wild-type mice was achieved via tubular injection of AAV9-short hairpin RNA (shRNA)-mediated targeting. Our findings offer technical approaches for investigating gene function in Sertoli and Leydig cells through AAV9-mediated gene silencing.
Animals
;
Male
;
Leydig Cells/metabolism*
;
Mice
;
Dependovirus/genetics*
;
Sertoli Cells/metabolism*
;
Gene Silencing
;
Genetic Vectors
;
Testis/cytology*
6.Tonifying kidney and activating blood therapy for the treatment of diabetic erectile dysfunction: A systematic review and meta-analysis.
Mao-Ke CHEN ; Ke-Cheng LI ; Jun-Long FENG ; Xiang-Fa LIN ; Wen-Xuan DONG ; Zi-Xiang GAO ; Hua-Nan ZHANG ; Hui CHEN ; Ji-Sheng WANG ; Bin WANG
National Journal of Andrology 2025;31(9):832-840
Objective: To systematically evaluate the clinical efficacy and safety of Tonifying kidney and activating blood therapy for the treatment of diabetic mellitus erectile dysfunction. Methods: China National Knowledge Infrastructure(CNKI), Wanfang Data, VIP, Chinese Biomedical Database(CBM), PubMed, Cochrane Library, Embase and Web of Science were searched from inception until October 20th of 2024,for randomized controlled trials of Tonifying kidney and activating blood therapy for the treatment of diabetic erectile dysfunction. Literature screening, quality evaluation, and data extraction were carried out in accordance with relevant standards. The software of RevMan5.4 was used for the analysis of publication bias. And meta-analysis was conducted to assess the impact of this therapy on IIEF-5, total effective rate, adverse reactions. The evidence levels according to the analysis results were evaluated. Results: Totally 19 RCTs were included, involving 1 612 patients. The result of meta-analysis indicated that Tonifying kidney and activating blood therapy had advantages on the improvement of IIEF-5 scores (MD=3.59,95%CI[2.14,5.03],P<0.01),total effective rate (OR=4.30,95%CI[3.29,5.32],P<0.000 01). However, there was no statistically significant difference in the incidence of adverse reactions(OR=0.98,95%CI[0.48,2.01],P=0.96) between the two groups. Conclusions: Tonifying kidney and activating blood therapy can improve the clinical efficacy and IIEF-5 score for the patients with diabetic erectile dysfunction. But considering the limited quantity of included studies, more high-quality studies still be needed to validate the therapeutic effect.
Humans
;
Male
;
Erectile Dysfunction/therapy*
;
Randomized Controlled Trials as Topic
;
Kidney
;
Medicine, Chinese Traditional
;
Diabetes Complications/therapy*
7.mRNA display-enabled discovery of proximity-triggered covalent peptide-drug conjugates.
Ruixuan WANG ; Siqi RAN ; Jiabei GUO ; Da HU ; Xiang FENG ; Jixia ZHOU ; Zhanzhi ZHANG ; Futian LIANG ; Jiamin SHANG ; Lingxin BU ; Kaiyi WANG ; Junyi MAO ; Huixin LUO ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(10):5474-5485
Peptide-drug conjugates (PDCs) have emerged as a promising modality in precision oncology, enabling targeted delivery of cytotoxic payloads while minimizing off-target toxicity. The integration of covalent warheads, such as those based on sulfur(VI) fluoride exchange (SuFEx) chemistry, enhances drug-target residence time and tumor accumulation. However, existing screening methods for covalent peptide (CP) libraries require post-translational warhead conjugation, limiting throughput. Here, we present an integrated mRNA display platform that incorporates covalent warheads during ribosomal synthesis, enabling efficient screening of ultra-diverse covalent macrocyclic peptide libraries (>1013 variants). This approach, using site-specific incorporation of N-chloroacetyl-d-phenylalanine and fluorosulfate-l-tyrosine, accelerated the discovery of irreversibly binding (K i = 3.58 μmol/L) Nectin-4-targeting peptide CP-N1-N3 via proximity-triggered SuFEx. The peptide was further conjugated to cytotoxic payloads, yielding the covalent PDC CP-N1-MMAE with potent cytotoxicity (IC50 ≈ 43 nmol/L) against MDA-MB-468 cells. This platform establishes a new paradigm for precision covalent drug discovery.
8.An upgraded nuclease prime editor platform enables high-efficiency singled or multiplexed knock-in/knockout of genes in mouse and sheep zygotes.
Weijia MAO ; Pei WANG ; Lei ZHOU ; Dongxu LI ; Xiangyang LI ; Xin LOU ; Xingxu HUANG ; Feng WANG ; Yanli ZHANG ; Jianghuai LIU ; Yongjie WAN
Protein & Cell 2025;16(8):732-738
9.Mechanism of human embryonic stem cell-derived mesenchymal stem cells on alleviating brain injury after cardiopulmonary resuscitation in swine with cardiac arrest.
Feng GE ; Jiefeng XU ; Jinjiang ZHU ; Guangli CAO ; Xuguang WANG ; Meiya ZHOU ; Tiejiang CHEN ; Mao ZHANG
Chinese Critical Care Medicine 2025;37(2):133-139
OBJECTIVE:
To investigate the mechanism of human embryonic stem cell-derived mesenchymal stem cells (hESC-MSC) in alleviating brain injury after resuscitation in swine with cardiac arrest (CA).
METHODS:
Twenty-nine healthy male large white swine were randomly divided into Sham group (n = 9), cardiopulmonary resuscitation (CPR) group (n = 10) and hESC-MSC group (n = 10). The Sham group only completed animal preparation. In CPR group and hESC-MSC group, the swine model of CA-CPR was established by inducing ventricular fibrillation for 10 minutes with electrical stimulation and CPR for 6 minutes. At 5 minutes after successful resuscitation, hESC-MSC 2.5×106/kg was injected via intravenous micropump within 1 hour in hESC-MSC group. Venous blood samples were collected before resuscitation and at 4, 8, 24, 48 and 72 hours of resuscitation. The levels of neuron specific enolase (NSE) and S100B protein (S100B) were detected by enzyme linked immunosorbent assay (ELISA). At 24, 48 and 72 hours of resuscitation, neurological deficit score (NDS) and cerebral performance category (CPC) were used to evaluate the neurological function of the animals. Three animals from each group were randomly selected and euthanized at 24, 48, and 72 hours of resuscitation, and the hippocampus tissues were quickly obtained. Immunofluorescence staining was used to detect the distribution of hESC-MSC in hippocampus. Immunohistochemical staining was used to detect the activation of astrocytes and microglia and the survival of neurons in the hippocampus. The degree of apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL).
RESULTS:
The serum NSE and S100B levels of brain injury markers in CPR group and hESC-MSC group were significantly higher than those in Sham group at 24 hours of resuscitation, and then gradually increased. The levels of NSE and S100B in serum at each time of resuscitation in hESC-MSC group were significantly lower than those in CPR group [NSE (μg/L): 20.69±3.62 vs. 28.95±3.48 at 4 hours, 27.04±5.56 vs. 48.59±9.22 at 72 hours; S100B (μg/L): 2.29±0.39 vs. 3.60±0.73 at 4 hours, 2.38±0.15 vs. 3.92±0.50 at 72 hours, all P < 0.05]. In terms of neurological function, compared with the Sham group, the NDS score and CPC score in the CPR group and hESC-MSC group increased significantly at 24 hours of resuscitation, and then gradually decreased. The NDS and CPC scores of hESC-MSC group were significantly lower than those of CPR group at 24 hours of resuscitation (NDS: 111.67±20.21 vs. 170.00±21.79, CPC: 2.33±0.29 vs. 3.00±0.00, both P < 0.05). The expression of hESC-MSC positive markers CD73, CD90 and CD105 in the hippocampus of hESC-MSC group at 24, 48 and 72 hours of resuscitation was observed under fluorescence microscope, indicating that hESC-MSC could homing to the damaged hippocampus. In addition, compared with Sham group, the proportion of astrocytes, microglia and apoptotic index in hippocampus of CPR group were significantly increased, and the proportion of neurons was significantly decreased at 24, 48 and 72 hours of resuscitation. Compared with CPR group, the proportion of astrocytes, microglia and apoptotic index in hippocampus of hESC-MSC group decreased and the proportion of neurons increased significantly at 24 hours of resuscitation [proportion of astrocytes: (14.33±1.00)% vs. (30.78±2.69)%, proportion of microglia: (12.00±0.88)% vs. (27.89±5.68)%, apoptotic index: (12.89±3.86)% vs. (52.33±7.77)%, proportion of neurons: (39.44±3.72)% vs. (28.33±1.53)%, all P < 0.05].
CONCLUSIONS
Application of hESC-MSC at the early stage of resuscitation can reduce the brain injury and neurological dysfunction after resuscitation in swine with CA. The mechanism may be related to the inhibition of immune cell activation, reduction of cell apoptosis and promotion of neuronal survival.
Animals
;
Heart Arrest/therapy*
;
Cardiopulmonary Resuscitation
;
Swine
;
Humans
;
Male
;
Human Embryonic Stem Cells/cytology*
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells/cytology*
;
Phosphopyruvate Hydratase/blood*
;
Brain Injuries/therapy*
;
S100 Calcium Binding Protein beta Subunit
;
Apoptosis
;
Disease Models, Animal
10.Clinical practice guidelines for the diagnosis and treatment of atopic dermatitis with integrative traditional Chinese and Western medicine.
Xin-Ran DU ; Meng-Yi WU ; Mao-Can TAO ; Ying LIN ; Chao-Ying GU ; Min-Feng WU ; Yi CAO ; Da-Can CHEN ; Wei LI ; Hong-Wei WANG ; Ying WANG ; Yi WANG ; Han-Zhi LU ; Xin LIU ; Xiang-Fei SU ; Fu-Lun LI
Journal of Integrative Medicine 2025;23(6):641-653
Traditional Chinese medicine (TCM) is a well-accepted therapy for atopic dermatitis (AD). However, there are currently no evidence-based guidelines integrating TCM and Western medicine for the treatment of AD, limiting the clinical application of such combined approaches. Therefore, the China Association of Chinese Medicine initiated the development of the current guideline, focusing on key issues related to the use of TCM in the treatment of AD. This guideline was developed in accordance with the principles of the guideline formulation manual published by the World Health Organization. A comprehensive review of the literature on the combined use of TCM and Western medicine to treat AD was conducted. The findings were extensively discussed by experts in dermatology and pharmacy with expertise in both TCM and Western medicine. This guideline comprises 23 recommendations across seven major areas, including TCM syndrome differentiation and classification of AD, principles and application scenarios of TCM combined with Western medicine for treating AD, outcome indicators for evaluating clinical efficacy of AD treatment, integration of TCM pattern classification and Western medicine across disease stages, daily management of AD, the use of internal TCM therapies and proprietary Chinese medicines, and TCM external treatments. Please cite this article as: Du XR, Wu MY, Tao MC, Lin Y, Gu CY, Wu MF, Cao Y, Chen DC, Li W, Wang HW, Wang Y, Wang Y, Lu HZ, Liu X, Su XF, Li FL. Clinical practice guidelines for the diagnosis and treatment of atopic dermatitis with integrative traditional Chinese and Western medicine. J Integr Med. 2025; 23(6):641-653.
Dermatitis, Atopic/drug therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Integrative Medicine
;
Drugs, Chinese Herbal/therapeutic use*
;
Practice Guidelines as Topic

Result Analysis
Print
Save
E-mail