1.Trilogy of drug repurposing for developing cancer and chemotherapy-induced heart failure co-therapy agent.
Xin CHEN ; Xianggang MU ; Lele DING ; Xi WANG ; Fei MAO ; Jinlian WEI ; Qian LIU ; Yixiang XU ; Shuaishuai NI ; Lijun JIA ; Jian LI
Acta Pharmaceutica Sinica B 2024;14(2):729-750
Chemotherapy-induced complications, particularly lethal cardiovascular diseases, pose significant challenges for cancer survivors. The intertwined adverse effects, brought by cancer and its complication, further complicate anticancer therapy and lead to diminished clinical outcomes. Simple supplementation of cardioprotective agents falls short in addressing these challenges. Developing bi-functional co-therapy agents provided another potential solution to consolidate the chemotherapy and reduce cardiac events simultaneously. Drug repurposing was naturally endowed with co-therapeutic potential of two indications, implying a unique chance in the development of bi-functional agents. Herein, we further proposed a novel "trilogy of drug repurposing" strategy that comprises function-based, target-focused, and scaffold-driven repurposing approaches, aiming to systematically elucidate the advantages of repurposed drugs in rationally developing bi-functional agent. Through function-based repurposing, a cardioprotective agent, carvedilol (CAR), was identified as a potential neddylation inhibitor to suppress lung cancer growth. Employing target-focused SAR studies and scaffold-driven drug design, we synthesized 44 CAR derivatives to achieve a balance between anticancer and cardioprotection. Remarkably, optimal derivative 43 displayed promising bi-functional effects, especially in various self-established heart failure mice models with and without tumor-bearing. Collectively, the present study validated the practicability of the "trilogy of drug repurposing" strategy in the development of bi-functional co-therapy agents.
2.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
3.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
4.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
5.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
6.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
7.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
8.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.
9.Protective effects of baicalin regulating NLRP3 inflammasome against acne
Jun-Tao MAO ; Li-Mei XU ; Mu CAO ; Hui XUE
The Chinese Journal of Clinical Pharmacology 2024;40(7):1039-1043
Objective To explore the protective mechanism of baicalin regulating NOD like receptor thermal protein domain associated protein 3(NLRP3)inflammasomes against acne.Methods Compound acne models were prepared by intradermal injection of Propionibacterium acnes into the auricle.Rats were randomly divided into control group(normal rats were given physiological saline by gavage),model group(acne model rats were given physiological saline by gavage),experimental-L,-M,-H groups(acne model rats were given 25,50,and 100 mg·kg-1 of baicalin by gavage),and positive control group(acne model rats were given 3.125 mg·kg-1 of isotretinoin by gavage),with 10 rats in each group.Observe the morphology of rat auricles;enzyme linked immunosorbent assay(ELISA)was used to detect the level of inflammation in serum;hematoxylin-eosin staining was used to detect pathological changes in rat auricle tissue;Western blotting was used to detect the protein expression level in the auricle tissue.Results After drug treatment,the auricular thickness of rats in the control,model,experimental-H and positive control groups were(0.42±0.05),(0.75±0.10),(0.49±0.05)and(0.50±0.05)mm;the serum levels of tumor necrosis factor-α were(20.46±2.13),(62.32±5.47),(23.27±2.26)and(25.41±2.28)pg·mL-1;interleukin-1 β levels were(11.38±1.26),(31.62±2.58),(15.61±1.35)and(16.72±1.38)pg·mL-1;interleukin-6 levels were(10.62±1.02),(25.43±2.51),(13.27±1.15)and(14.01±1.17)pg·mL-1;NLRP3 protein expression levels in auricular tissues were 0.23±0.03,0.81±0.08,0.30±0.04 and 0.32±0.04;and Caspase-1 protein expression levels were 0.31±0.04,0.76±0.08,0.39±0.04 and 0.41±0.04;matrix metalloproteinase-2 protein expression levels were 0.35±0.04,0.86±0.10,0.40±0.05 and 0.42±0.05.Compared with the model group,the above indexes in the experimental-H group were statistically significant(all P<0.05).Conclusion Baicalin can inhibit the inflammatory response in acne rats,and its mechanism of action may be related to the inhibition of the NLRP3 inflammasome signaling pathway.
10.Research on Diagnosis Model of Endometrial Lesions by Hysteroscopy Based on Deep Learning Algorithm Combined with Grad-CAM
Mingliang CAO ; Mi YIN ; Qingbin WANG ; Hanfeng ZHU ; Xing LI ; Jun ZHANG ; Lin MAO ; Xuefeng MU ; Min CAO ; Yutao MA ; Jian WANG ; Yan ZHANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):409-413
Objective:To explore the effectiveness of a hysteroscopic endometrial lesion diagnosis model de-veloped based on deep learning(DL)algorithm combined with gradient-weighted class activation mapping(Grad-CAM)visualization technology.Methods:303 hysteroscopy videos(4781 images)of 291 patients who un-derwent hysteroscopy examination in the Department of Gynecology,Renmin Hospital of Wuhan University from June 1,2021 to December 31,2022 were selected.The dataset was divided into a training set(3703 images)and a test set(1078 images)by weight sampling method.After the training set was used for model learning and train-ing,two model architectures,residual neural network(ResNet18)and efficient neural network(EfficientNet-B0),were selected to verify the model in the test set by five-class and two-class classification tasks,respectively.Tak-ing histopathology as the gold standard,the diagnostic efficacy was evaluated to select the optimal model,and the Grad-CAM layer was embedded in the optimal model to output hysteroscopy images of Grad-CAM.Results:①In the five-class classification tasks,the accuracy of EfficientNet-B0 model(93.23%)was higher than that of Res-Net18 model(84.23%);the area under the curve(AUC)of EfficientNet-B0 model in the diagnosis of five disea-ses,including atypical endometrial hyperplasia,endometrial polyps,endometrial cancer,endometrial atypical hy-perplasia,and submucous myoma,was slightly higher than that of ResNet18 model,and the AUC of both models was almost above 0.980.②In the binary classification task of accuracy and the evaluation of specificity,the two models were similar,both above 93.00%,and the sensitivity of EfficientNet-B0 model(91.14%)was significantly better than that of ResNet18 model(77.22%).③EfficientNet-B0 model combined with Grad-CAM algorithm could identify the abnormal areas in the image.After biopsy and pathological examination,it was confirmed that about 95%of the marked areas in the model's output heatmap were lesion areas.Conclusions:The hysteroscopy di-agnostic model developed by EfficientNet-B0 model combined with Grad-CAM has high diagnostic accuracy,sen-sitivity,and specificity,and has application value in the diagnosis of endometrial lesions.

Result Analysis
Print
Save
E-mail