2.TCOF1 Gene variation in Treacher Collins syndrome and evaluation of speech rehabilitation after bone bridge surgery.
Yonghua LI ; Wenyue CHI ; Ken LIN ; Jinyan ZU ; Hua SHAO ; Zhiyong MAO ; Quandong CHEN ; Jing MA
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(9):748-754
Objective:By analyzing the clinical phenotypic characteristics and gene sequences of two patients with Treacher Collins syndrome(TCS), the biological causes of the disease were determined. Then discuss the therapeutic effect of hearing intervention after bone bridge implantation. Methods:All clinical data of the two family members were collected, and the patients signed the informed consent. The peripheral blood of the proband and family members was extracted, DNA was extracted for whole exome sequencing, and Sanger sequencing was performed on the family members for the mutation site.TCOF1genetic mutations analysis was performed on the paitents. Then, the hearing threshold and speech recognition rate of family 2 proband were evaluated and compared under the sound field between bare ear and wearing bone bridge. Results:In the two pedigrees, the probands of both families presented with auricle deformity, zygomatic and mandibular hypoplasia, micrognathia, hypotropia of the eye fissure, and hypoplasia of the medial eyelashes. The proband of Family 1 also presents with specific features including right-sided narrow anterior nasal aperture and dental hypoplasia, which were consistent with the clinical diagnosis of Treacher Collins syndrome. Genetic testing was conducted on both families, and two heterozygous mutations were identified in the TCOF1 gene: c. 1350_1351dupGG(p. A451Gfs*43) and c. 4362_4366del(p. K1457Efs*12), resulting in frameshift mutations in the amino acid sequence. Sanger sequencing validation of the TCOF1 gene in the parents of the proband in Family 1 did not detect any mutations. Proband 1 TCOF1 c. 1350_1351dupGG heterozygous variants have not been reported previously. The postoperative monosyllabic speech recognition rate of family 2 proband was 76%, the Categories of Auditory Performance(CAP) score was 6, and the Speech Intelligibility Rating(SIR) score was 4. Assessment using the Meaningful Auditory Integration Scale(MAIS) showed notable improvement in the patient's auditory perception, comprehension, and usage of hearing aids. Evaluation using the Glasgow Children's Benefit Inventory and quality of life assessment revealed significant improvements in the child's self care abilities, daily living and learning, social interactions, and psychological well being, as perceived by the parents. Conclusion:This study has elucidated the biological cause of Treacher Collins syndrome, enriched the spectrum of TCOF1 gene mutations in the Chinese population, and demonstrated that bone bridge implantation can improve the auditory and speech recognition rates in TCS patients.
Child
;
Humans
;
Mandibulofacial Dysostosis/genetics*
;
Quality of Life
;
Speech
;
Parents
;
Mutation
;
Nuclear Proteins/genetics*
;
Phosphoproteins/genetics*
3.Model test study on treatment of Pruzansky type ⅡB and Ⅲ hemifacial microsomia with artificial condyle-mandibular distractor complex.
Ruilin ZHAO ; Xi FU ; Jia QIAO ; Yu HE ; Shixing XU ; Ying CHEN ; Bing YU ; Jianfeng LIU ; Feng NIU
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(10):1270-1275
OBJECTIVE:
To preliminarily verify the effectiveness of self-designed artificial condyle-mandibular distraction (AC-MD) complex in the treatment of Pruzansky type ⅡB and Ⅲ hemifacial microsomia (HFM) through model test.
METHODS:
Five children with Pruzansky type ⅡB and Ⅲ HFM who were treated with mandibular distraction osteogenesis (MDO) between December 2016 and December 2021 were selected as the subjects. There were 3 boys and 2 girls wih an average age of 8.4 years (range, 6-10 years). Virtual surgery and model test of AC-MD complex were performed according to preoperative skull CT of children. The model was obtained by three-dimensional (3D) printing according to the children's CT data at a ratio of 1∶1. The occlusal guide plate was designed and 3D printed according to the children's toothpaste model. The results of the model test and the virtual surgery were matched in three dimensions to calculate the error of the residual condyle on the affected side, and the model test was matched with the actual skull CT after MDO to measure and compare the inclination rotation of the mandible, the distance between the condylar of the healthy side and the residual condyle of the affected side, and the lengthening length of the mandible.
RESULTS:
The error of residual condyle was (1.07±0.78) mm. The inclination rotation of the mandible, the distance between the condylar of the healthy side and the residual condyle of the affected side, and the lengthening length of the mandible after 3D printing model test were significantly larger than those after MDO ( P<0.05).
CONCLUSION
In the model test, the implantation of AC-MD complex can immediately rotate the mandible to the horizontal position and improve facial symmetry, and the residual condyle segment can be guided close to the articular fossa or the preset pseudoarticular position of the skull base after operation.
Male
;
Child
;
Female
;
Humans
;
Goldenhar Syndrome/surgery*
;
Mandible/surgery*
;
Osteogenesis, Distraction/methods*
;
Printing, Three-Dimensional
;
Facial Asymmetry/surgery*
4.Genetic analysis of a rare fetus with mandibulofacial dysostosis Guion-Almeida type.
Lulu YAN ; Liyun TIAN ; Juan CAO ; Bihua ZHOU ; Yuxin ZHANG ; Yingwen LIU ; Chunxiao HAN ; Haibo LI
Chinese Journal of Medical Genetics 2021;38(8):791-794
OBJECTIVE:
To delineate the clinical and genetic features of a fetus with micrognathia, low-set ears, microtia, polyhydramnios and anechoic stomach by ultrasonography.
METHODS:
Whole exome sequencing (WES) was carried out to detect genetic variant in the fetus, for which routine chromosomal karyotyping and chromosomal microarray analysis (CMA) yielded no positive finding. Candidate variants were verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
WES revealed that the fetus has carried a de novo nonsense c.2302C>T (p.Q768X) variant in exon 23 of the EFTUD2 gene, which was detected in neither parent. The variant was unreported previously and may lead to premature termination of the translation of EFTUD2 protein at the 768th amino acid. Bioinformatic analysis predicted the amino acid to be highly conserved and may alter the structure and function of the EFTUD2 protein.
CONCLUSION
The c.2302C>T variant of the EFTUD2 gene probably underlay the mandibulofacial dysostosis Guion-Almeida type in the fetus. Discovery of the novel variant has enriched variant spectrum of the EFTUD2 gene and provided a basis for genetic counseling and prenatal diagnosis for the family.
Female
;
Fetus
;
Humans
;
Mandibulofacial Dysostosis/genetics*
;
Mutation
;
Peptide Elongation Factors/genetics*
;
Phenotype
;
Pregnancy
;
Ribonucleoprotein, U5 Small Nuclear/genetics*
5.Pathogenic genes and clinical therapeutic strategies for Treacher Collins syndrome.
Bin YIN ; Bing SHI ; Zhong-Lin JIA
West China Journal of Stomatology 2019;37(3):330-335
Treacher Collins syndrome is a congenital craniofacial malformation with autosomal dominant inheritance as the main genetic pattern. In this condition, the biosynthesis of ribosomes in neural crest cells and neuroepithelial cells is blocked and the number of neural crest cells that migrate to the craniofacial region decreases, causing first and second branchial arch dysplasia. Definite causative genes include treacle ribosome biogenesis factor 1 (tcof1), RNA polymerase Ⅰ and Ⅲ subunit C (polr1c), and RNA polymerase Ⅰ and Ⅲ subunit D (polr1d). This paper provides a review of research of three major patho-genic genes, pathogenesis, phenotypic research, prevention, and treatment of the syndrome.
DNA-Directed RNA Polymerases
;
genetics
;
Humans
;
Mandibulofacial Dysostosis
;
genetics
;
Neural Crest
;
Nuclear Proteins
;
Phosphoproteins
6.Contouring of zygomatic soft tissue using bilateral free groin flaps in a Treacher Collins syndrome patient.
Archives of Craniofacial Surgery 2018;19(2):131-134
Treacher Collins syndrome is a congenital disorder that is characterized with a wide range of cranio-facial deformities. Zygomatic hypoplasia or aplasia is one of the key features, and surgical reconstruction of the consequent depression on the zygomatic area is deemed necessary by many patients. Various surgical options are available—injectables, alloplastic materials, autologous grafting, and autogenous tissue transfer. It depends on each patient which technique to use. Here, we present a clinical case, in which bilateral free groin flaps were adopted in attempt to resolve the remnant aesthetic deformity associated with zygomatic depression, despite a series of previous surgical efforts, in a 25-year-old Treacher Collins syndrome male patient.
Adult
;
Congenital Abnormalities
;
Congenital, Hereditary, and Neonatal Diseases and Abnormalities
;
Depression
;
Free Tissue Flaps
;
Groin*
;
Humans
;
Male
;
Mandibulofacial Dysostosis*
;
Transplants
7.Aesthetic Correction of Severe Facial Asymmetry in a Deformational Plagiocephaly Patient: A Case Report and Literature Review.
Jae Yeon PARK ; Hyo Joong KIM ; Seil LEE ; Sung Gyun JUNG
Archives of Aesthetic Plastic Surgery 2017;23(3):159-163
Deformational plagiocephaly (DP) (also referred to as positional plagiocephaly) has long posed challenges for plastic surgeons because it is difficult to differentiate from several other diseases, such as unilateral coronal synostosis, hemifacial microsomia, and unilateral lambdoidal craniosynostosis. These diseases can actually masquerade as DP or vice versa. Only in recent years has the differential diagnosis among these diseases become possible through improved imaging modalities, such as computed tomography, and a greater understanding of their pathophysiology. Herein, we report a rather rare, yet severe, form of DP that can easily be confused with the aforementioned diseases.
Blepharoplasty
;
Craniosynostoses
;
Diagnosis, Differential
;
Facial Asymmetry*
;
Goldenhar Syndrome
;
Humans
;
Plagiocephaly
;
Plagiocephaly, Nonsynostotic*
;
Plastics
;
Surgeons
8.A Wide Spectrum of Axial Mesodermal Dysplasia Complex With Rhombencephalic Anomaly: A Case Report.
Kang Won KIM ; Jeoung Hwan SEO ; Myoung Hwan KO ; Yu Hui WON ; Sung Hee PARK
Annals of Rehabilitation Medicine 2016;40(1):162-167
Axial mesodermal dysplasia complex (AMDC) arises in variable combinations of craniocaudal anomalies such as musculoskeletal deformities, neuroschisis, or rhombencephalic developmental disorders. To the best of our knowledge, the co-existence of AMDC with associated musculoskeletal anomalies, medullary neuroschisis with mirror movements, and cranial nerve anomalies has not yet been reported. Here, we report the case of a 4-year-old boy whose clinical features were suggestive of Goldenhar syndrome and Poland syndrome with Sprengel deformity. Moreover, he showed mirror movements in his hands suspected of rhombencephalic malformation, and infranuclear-type facial nerve palsy of the left side of his face, the opposite side to the facial anomalies of Goldenhar syndrome. After conducting radiological studies, he was diagnosed with medullary neuroschisis without pontine malformations and Klippel-Feil syndrome with rib anomalies. Based on these findings, we propose that clinical AMDC can be accompanied by a wide variety of musculoskeletal defects and variable degrees of central nervous system malformations. Therefore, in addition to detailed physical and neurological examinations, imaging studies should be considered in AMDC.
Central Nervous System
;
Child, Preschool
;
Congenital Abnormalities
;
Cranial Nerves
;
Facial Nerve
;
Goldenhar Syndrome
;
Hand
;
Humans
;
Klippel-Feil Syndrome
;
Male
;
Medulla Oblongata
;
Mesoderm*
;
Neurologic Examination
;
Paralysis
;
Poland Syndrome
;
Rhombencephalon
;
Ribs
9.Management of obstructive sleep apnea in a Treacher Collins syndrome patient using distraction osteogenesis of the mandible.
Ibrahim DAMLAR ; Ahmet ALTAN ; Berk TURGAY ; Soydan KILIÇ
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2016;42(6):388-392
In this study, we present the surgical treatment of obstructive sleep apnea in a child with Treacher Collins syndrome. A 10-year-old girl with a past history of Treacher Collins syndrome presented to our clinic with her parents for respiratory distress and insomnia. The patient was referred to a sleep laboratory where she was diagnosed with obstructive sleep apnea, which was a consequence of her Treacher Collins syndrome. The patient underwent mandibular distraction osteogenesis under general anesthesia. The mandible was expanded by 15 mm using internal bilateral distractors. After distraction osteogenesis, the patient’s respiratory problems resolved, and she was able to sleep comfortably. Distraction osteogenesis was an effective method of advancing the mandible, increasing the upper airway space and ultimately preventing obstructive sleep apnea syndrome in patients with Treacher Collins syndrome.
Anesthesia, General
;
Child
;
Female
;
Humans
;
Mandible*
;
Mandibulofacial Dysostosis*
;
Methods
;
Osteogenesis, Distraction*
;
Parents
;
Sleep Apnea, Obstructive*
;
Sleep Initiation and Maintenance Disorders
10.The research progress of Treacher Collins syndrome.
Pu WANG ; Xinmiao FAN ; Yue FAN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2016;30(4):333-338
Treacher Collins syndrome (TCS, OMIM 154500), also known as Franceschetti-Klein syndrome, is a rare disorder that affects the first and second branchial arches. The estimated incidence is 1/50 000 live births. Mutations in TCOF1 (78%-93%) and POLR1C or POLR1D (8%) cause the disease. Most of TCS cases are inherited in a dominant pattern, while a small proportion are inherited in a recessive pattern. TCS has a variable phenotype with typical clinical characteristics including downward-slant of palpebral fissure, malar hypoplasia, mandibular hypoplasia and microtia. TCS management is a multidisciplinary affair, as interventions range from reconstructive to psychosocial. For hearing rehabilitation, TCS patients may have the choices of BAHA, ponto, vibrant soundbridge or bonebridge implantation. In this review, we summarize the TCS clinical malformations, diagnosis, genetics, management and auditory rehabilitation.
DNA-Directed RNA Polymerases
;
genetics
;
Facial Bones
;
abnormalities
;
Humans
;
Mandibulofacial Dysostosis
;
diagnosis
;
genetics
;
rehabilitation
;
Mutation
;
Nuclear Proteins
;
genetics
;
Phosphoproteins
;
genetics

Result Analysis
Print
Save
E-mail