1.The regulatory relationship between RagA and Nprl2 in Drosophila gut development.
Chunmei NIU ; Jianwen GUAN ; Guoqiang MENG ; Ying ZHOU ; Youheng WEI
Chinese Journal of Biotechnology 2023;39(4):1747-1758
The gastrointestinal tract is the largest digestive organ and the largest immune organ and detoxification organ, which is vital to the health of the body. Drosophila is a classic model organism, and its gut is highly similar to mammalian gut in terms of cell composition and genetic regulation, therefore can be used as a good model for studying gut development. target of rapmaycin complex 1 (TORC1) is a key factor regulating cellular metabolism. Nprl2 inhibits TORC1 activity by reducing Rag GTPase activity. Previous studies have found that nprl2 mutated Drosophila showed aging-related phenotypes such as enlarged foregastric and reduced lifespan, which were caused by over-activation of TORC1. In order to explore the role of Rag GTPase in the developmental defects of the gut of nprl2 mutated Drosophila, we used genetic hybridization combined with immunofluorescence to study the intestinal morphology and intestinal cell composition of RagA knockdown and nprl2 mutated Drosophila. The results showed that RagA knockdown alone could induce intestinal thickening and forestomach enlargement, suggesting that RagA also plays an important role in intestinal development. Knockdown of RagA rescued the phenotype of intestinal thinning and decreased secretory cells in nprl2 mutants, suggesting that Nprl2 may regulate the differentiation and morphology of intestinal cells by acting on RagA. Knockdown of RagA did not rescue the enlarged forestomach phenotype in nprl2 mutants, suggesting that Nprl2 may regulate forestomach development and intestinal digestive function through a mechanism independent of Rag GTPase.
Animals
;
Drosophila/genetics*
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
Mammals/metabolism*
;
Carrier Proteins
;
Tumor Suppressor Proteins/metabolism*
;
Drosophila Proteins/genetics*
2.Periplaneta americana extract CⅡ-3 induces senescence of leukemia K562 cells via SIRT1/mTOR signaling pathway.
Si-Yue HE ; Cheng-Gui ZHANG ; Heng LIU ; Yue ZHOU ; Zi-Yun TANG ; Zi-Ying BI ; Lu TIAN ; Min-Rui LI
China Journal of Chinese Materia Medica 2023;48(11):3039-3045
This study aims to investigate the role of slient mating-type information regulation 2 homolog 1(SIRT1)/tuberous sclerosis complex 2(TSC2)/mammalian target of rapamycin(mTOR) signaling pathways in the Periplaneta americana extract CⅡ-3-induced senescence of human leukemia K562 cells. K562 cells were cultured in vitro and treated with 0(control), 5, 10, 20, 40, 80, and 160 μg·mL~(-1) of P. americana extract CⅡ-3. Cell counting kit-8(CCK-8) and flow cytometry were employed to examine the proliferation and cell cycle of the K562 cells. Senescence-associated β-galactosidase stain kit(SA-β-gal) was used to detect the positive rate of senescent cells. Mitochondrial membrane potential was detected by flow cytometry. The relative mRNA level of telomerase reverse transcriptase(TERT) was determined by fluorescence quantitative PCR. The mRNA and protein levels of SIRT1, TSC2, and mTOR were determined by fluorescence quantitative PCR and Western blot, respectively. The results showed that CⅡ-3 significantly inhibited the proliferation of K562 cells and the treatment with 80 μg·mL~(-1) CⅡ-3 for 72 h had the highest inhibition rate. Therefore, 80 μg·mL~(-1) CⅡ-3 treatment for 72 h was selected as the standard for subsequent experiments. Compared with the control group, CⅡ-3 increased the proportion of cells arrested in G_0/G_1 phase, decreased the proportion of cells in S phase, increased the positive rate of SA-β-Gal staining, elevated the mitochondrial membrane potential and down-regulated the mRNA expression of TERT. Furthermore, the mRNA expression of SIRT1 and TSC2 was down-regulated, while the mRNA expression of mTOR was up-regulated. The protein expression of SIRT1 and p-TSC2 was down-regulated, while the protein expression of p-mTOR was up-regulated. The results indicated that P. americana extract CⅡ-3 induced the senescence of K562 cells via the SIRT1/mTOR signaling pathway.
Humans
;
Animals
;
Periplaneta
;
Sirtuin 1/genetics*
;
K562 Cells
;
Signal Transduction
;
TOR Serine-Threonine Kinases/genetics*
;
RNA, Messenger
;
Mammals
3.Shaofu Zhuyu Decoction attenuates fibrosis in endometriosis through regulating PTEN/Akt/mTOR signaling pathway.
Xiu-Jia JI ; Xiao-Hua ZHANG ; Can-Can HUANG ; Zuo-Liang ZHANG ; Hai-Yan MAO ; Bin YUE ; Bing-Yu LIU ; Quan-Sheng WU
China Journal of Chinese Materia Medica 2023;48(12):3207-3214
The present study aimed to investigate the protective role of Shaofu Zhuyu Decoction(SFZY) against endometriosis fibrosis in mice, and decipher the underlying mechanism through the phosphatase and tensin homolog deleted on chromosome ten(PTEN)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) pathway. Eighty-five BALB/c female mice were randomly assigned into a blank group, a model group, high-, medium, and low-dose SFZY(SFZY-H, SFZY-M, and SFZY-L, respectively) groups, and a gestrinone suspension(YT) group. The model of endometriosis was induced by intraperitoneal injection of uterine fragments. The mice in different groups were administrated with corresponding groups by gavage 14 days after modeling, and the blank group and model group with equal volume of distilled water by gavage. The treatment lasted for 14 days. The body weight, paw withdrawal latency caused by heat stimuli, and total weight of dissected ectopic focus were compared between different groups. The pathological changes of the ectopic tissue were observed via hematoxylin-eosin(HE) and Masson staining. Real-time PCR was employed to measure the mRNA levels of α-smooth muscle actin(α-SMA) and collagen type Ⅰ(collagen-Ⅰ) in the ectopic tissue. The protein levels of PTEN, Akt, mTOR, p-Akt, and p-mTOR in the ectopic tissue were determined by Western blot. Compared with the blank group, the modeling first decreased and then increased the body weight of mice, increased the total weight of ectopic focus, and shortened the paw withdrawal latency. Compared with the model group, SFZY and YT increased the body weight, prolonged the paw withdrawal latency, and decreased the weight of ectopic focus. Furthermore, the drug administration, especially SFZY-H and YT(P<0.01), recovered the pathological and reduced the area of collagen deposition. Compared with the blank group, the modeling up-regulated the mRNA levels of α-SMA and collagen-Ⅰ in the ectopic focus, and such up-regulation was attenuated after drug intervention, especially in the SFZY-H and YT groups(P<0.05,P<0.01). Compared with the blank group, the modeling down-regulated the protein level of PTEN and up-regulated the protein levels of Akt, mTOR, p-Akt, and p-mTOR(P<0.01, P<0.001). Drug administration, especially SFZY-H and YT, restored such changes(P<0.01). SFZY may significantly attenuate the focal fibrosis in the mouse model of endometriosis by regulating the PTEN/Akt/mTOR signaling pathway.
Female
;
Animals
;
Mice
;
Humans
;
Proto-Oncogene Proteins c-akt/genetics*
;
Choristoma
;
Endometriosis/genetics*
;
TOR Serine-Threonine Kinases/genetics*
;
RNA, Messenger
;
Signal Transduction
;
Body Weight
;
Mammals
;
PTEN Phosphohydrolase/genetics*
4.Effects of Rehmanniae Radix and Rehmanniae Radix Praeparata on proteomics and autophagy in mice with type 2 diabetes mellitus induced by high-fat diet coupled with streptozotocin.
Jing-Ning YAN ; Xiao-Qin LIU ; Xiang-Long MENG ; Ke-le REN ; Xue-Min WU ; Hao ZHANG ; Hai-Qin WANG ; Hong-Liang WANG ; Qi SHENG ; Bin LI ; Ding-Bang ZHANG ; Hong-Zhou CHEN ; Fa-Yun ZHANG ; Ming-Hao LI ; Shuo-Sheng ZHANG
China Journal of Chinese Materia Medica 2023;48(6):1535-1545
To compare the pancreatic proteomics and autophagy between Rehmanniae Radix-and Rehmanniae Radix Praeparata-treated mice with type 2 diabetes mellitus(T2DM). The T2DM mouse model was established by high-fat diet coupled with streptozotocin(STZ, intraperitoneal injection, 100 mg·kg~(-1), once a day for three consecutive days). The mice were then randomly assigned into a control group, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) catalpol groups, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix Praeparata groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) 5-hydroxymethyl furfuraldehyde(5-HMF) groups, and a metformin(250 mg·kg~(-1)) group. In addition, a normal group was also set and each group included 8 mice. The pancreas was collected after four weeks of administration and proteomics tools were employed to study the effects of Rehmanniae Radix and Rehmanniae Radix Praeparata on protein expression in the pancreas of T2DM mice. The expression levels of proteins involved in autophagy, inflammation, and oxidative stress response in the pancreatic tissues of T2DM mice were determined by western blotting, immunohistochemical assay, and transmission electron microscopy. The results showed that the differential proteins between the model group and Rehmanniae Radix/Rehmanniae Radix Prae-parata group were enriched in 7 KEGG pathways, such as autophagy-animal, which indicated that the 7 pathways may be associated with T2DM. Compared with the control group, drug administration significantly up-regulated the expression levels of beclin1 and phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR and down-regulated those of the inflammation indicators, Toll-like receptor-4(TLR4) and Nod-like receptor protein 3(NLRP3), in the pancreas of T2DM mice, and Rehmanniae Radix showed better performance. In addition, the expression levels of inducible nitric oxide synthase(iNOS), nuclear factor erythroid 2-related factor 2(Nrf2), and heine oxygenase-1(HO-1) in the pancreas of T2DM mice were down-regulated after drug administration, and Rehmanniae Radix Praeparata demonstrated better performance. The results indicate that both Rehmanniae Radix and Rehmanniae Radix Praeparata can alleviate the inflammatory symptoms, reduce oxidative stress response, and increase the autophagy level in the pancreas of T2DM mice, while they exert the effect on different autophagy pathways.
Mice
;
Animals
;
Diabetes Mellitus, Type 2/genetics*
;
Streptozocin/pharmacology*
;
Diet, High-Fat/adverse effects*
;
Proteomics
;
Inflammation
;
TOR Serine-Threonine Kinases
;
Autophagy
;
Mammals
5.Roles of alternative splicing in infectious diseases: from hosts, pathogens to their interactions.
Mengyuan LYU ; Hongli LAI ; Yili WANG ; Yanbing ZHOU ; Yi CHEN ; Dongsheng WU ; Jie CHEN ; Binwu YING
Chinese Medical Journal 2023;136(7):767-779
Alternative splicing (AS) is an evolutionarily conserved mechanism that removes introns and ligates exons to generate mature messenger RNAs (mRNAs), extremely improving the richness of transcriptome and proteome. Both mammal hosts and pathogens require AS to maintain their life activities, and inherent physiological heterogeneity between mammals and pathogens makes them adopt different ways to perform AS. Mammals and fungi conduct a two-step transesterification reaction by spliceosomes to splice each individual mRNA (named cis -splicing). Parasites also use spliceosomes to splice, but this splicing can occur among different mRNAs (named trans -splicing). Bacteria and viruses directly hijack the host's splicing machinery to accomplish this process. Infection-related changes are reflected in the spliceosome behaviors and the characteristics of various splicing regulators (abundance, modification, distribution, movement speed, and conformation), which further radiate to alterations in the global splicing profiles. Genes with splicing changes are enriched in immune-, growth-, or metabolism-related pathways, highlighting approaches through which hosts crosstalk with pathogens. Based on these infection-specific regulators or AS events, several targeted agents have been developed to fight against pathogens. Here, we summarized recent findings in the field of infection-related splicing, including splicing mechanisms of pathogens and hosts, splicing regulation and aberrant AS events, as well as emerging targeted drugs. We aimed to systemically decode host-pathogen interactions from a perspective of splicing. We further discussed the current strategies of drug development, detection methods, analysis algorithms, and database construction, facilitating the annotation of infection-related splicing and the integration of AS with disease phenotype.
Animals
;
Alternative Splicing/genetics*
;
RNA Splicing
;
Spliceosomes/metabolism*
;
RNA, Messenger/metabolism*
;
Communicable Diseases/genetics*
;
Mammals/metabolism*
6.Mammalian DMRTs: Structure, function and relationship with cancer.
Hai-Long LI ; Zi-Cong ZOU ; Chi FANG ; Yi-Ping ZHENG ; Xiao-Ming GUO ; Wei-Hong YANG
Acta Physiologica Sinica 2023;75(2):269-278
DMRT, a gene family related to sexual determination, encodes a large group of transcription factors (DMRTs) with the double-sex and mab-3 (DM) domain (except for DMRT8), which is able to bind to and regulate DNAs. Current studies have shown that the DMRT gene family plays a critical role in the development of sexual organs (such as gender differentiation, gonadal development, germ cell development, etc.) as well as extrasexual organs (such as musculocartilage development, nervous system development, etc.). Additionally, it has been suggested that DMRTs may be involved in the cancer development and progression (such as prostate cancer, breast cancer, lung cancer, etc.). This review summarizes the research progress about the mammalian DMRTs' structure, function and its critical role in cancer development, progression and therapy (mainly in human and mice), which suggests that DMRT gene could be a candidate gene in the study of tumor formation and therapeutic strategy.
Male
;
Animals
;
Humans
;
Mice
;
Transcription Factors/genetics*
;
Mammals/metabolism*
;
Cell Differentiation
;
Neoplasms/genetics*
7.Distinct mononuclear diploid cardiac subpopulation with minimal cell-cell communications persists in embryonic and adult mammalian heart.
Miaomiao ZHU ; Huamin LIANG ; Zhe ZHANG ; Hao JIANG ; Jingwen PU ; Xiaoyi HANG ; Qian ZHOU ; Jiacheng XIANG ; Ximiao HE
Frontiers of Medicine 2023;17(5):939-956
A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM-fibroblast (FB) communications and one maintaining MNDCM status with least CM-FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell-cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell-cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.
Animals
;
Mice
;
Diploidy
;
Heart
;
Myocytes, Cardiac/metabolism*
;
Cell Communication
;
Gene Expression Profiling
;
Mitochondria
;
Regeneration
;
Mammals/genetics*
8.Single chain antibody fragment display systems: a review.
Yao CHEN ; Xingfu SHU ; Yu ZHAO ; Bowen ZHANG ; Zhongren MA ; Haixia ZHANG
Chinese Journal of Biotechnology 2023;39(9):3681-3694
Single chain antibody fragment (scFv) is a small molecule composed of a variable region of heavy chain (VH) and a variable region of light chain (VL) of an antibody, and these two chains are connected by a flexible short peptide. scFv is the smallest functional fragment with complete antigen-binding activity, which contains both the antibody-recognizing site and the antigen-binding site. Compared with other antibodies, scFv has the advantages of small molecular weight, strong penetration, low immunogenicity, and easy expression. Currently, the most commonly used display systems for scFv mainly include the phage display system, ribosome display system, mRNA display system, yeast cell surface display system and mammalian cell display system. In recent years, with the development of scFv in the field of medicine, biology, and food safety, they have also attracted much attention in the sectors of biosynthesis and applied research. This review summarizes the advances of scFv display systems in recent years in order to facilitate scFv screening and application.
Animals
;
Immunoglobulin Variable Region/genetics*
;
Immunoglobulin Fragments/metabolism*
;
Single-Chain Antibodies/metabolism*
;
Peptide Library
;
Mammals/genetics*
9.Application of deep mutational scanning technology in protein research.
Yifan LI ; Yi WANG ; Kaili ZHANG ; Shuai LI
Chinese Journal of Biotechnology 2023;39(9):3710-3723
As central players in cellular structure and function, proteins have long been central themes in life science research. Analyzing the impact of protein sequence variation on its structure and function is one of the important means to study proteins. In recent years, a technology called deep mutational scanning (DMS) has been widely used in the field of protein research. It introduces thousands of mutations in parallel in specific regions of proteins through high-abundance DNA libraries. After screening, high-throughput sequencing is employed to score each mutation, revealing sequence-function correlations. Due to its high-throughput, fast and easy, and labor-saving features, DMS has become an important method for protein function research and protein engineering. This review briefly summarizes the principle of DMS technology, highlighting its applications in mammalian cells. Moreover, this review analyzes the current technical bottlenecks, aiming to facilitate relevant research.
Animals
;
Mutation
;
Proteins/chemistry*
;
Protein Engineering
;
High-Throughput Nucleotide Sequencing/methods*
;
Mammals/genetics*
10.Effects of manipulating lactate dehydrogenase gene on metabolism of HEK-293 and production of human adenovirus.
Junqing MIAO ; Xiaoping YI ; Xiangchao LI ; Yingping ZHUANG
Chinese Journal of Biotechnology 2023;39(9):3863-3875
Reducing lactate accumulation has always been a goal of the mammalian cell biotechnology industry. When animal cells are cultured in vitro, the accumulation of lactate is mainly the combined result of two metabolic pathways. On one hand, glucose generates lactate under the function of lactate dehydrogenase A (LDHA); on the other hand, lactate can be oxidized to pyruvate by LDHB or LDHC and re-enter the TCA cycle. This study comprehensively evaluated the effects of LDH manipulation on the growth, metabolism and human adenovirus (HAdV) production of human embryonic kidney 293 (HEK-293) cells, providing a theoretical basis for engineering the lactate metabolism in mammalian cells. By knocking out ldha gene and overexpression of ldhb and ldhc genes, the metabolic efficiency of HEK-293 cells was effectively improved, and HAdV production was significantly increased. Compared with the control cell, LDH manipulation promoted cell growth, reduced the accumulation of lactate and ammonia, significantly enhanced the efficiency of substrate and energy metabolism of cells, and significantly increased the HAdV production capacity of HEK-293 cells. Among these LDH manipulation measures, ldhc gene overexpression performed the best, with the maximum cell density increased by about 38.7%. The yield of lactate to glucose and ammonia to glutamine decreased by 33.8% and 63.3%, respectively; and HAdV titer increased by at least 16 times. In addition, the ATP production rate, ATP/O2 ratio, ATP/ADP ratio and NADH content of the modified cell lines were increased to varying degrees, and the energy metabolic efficiency was significantly improved.
Animals
;
Humans
;
L-Lactate Dehydrogenase/genetics*
;
Lactic Acid
;
Adenoviruses, Human
;
Ammonia
;
HEK293 Cells
;
Glucose/metabolism*
;
Adenosine Triphosphate/metabolism*
;
Kidney/metabolism*
;
Mammals/metabolism*

Result Analysis
Print
Save
E-mail