1.Efficacy and safety of the long-acting fusion inhibitor albuvirtide in antiretroviral-experienced adults with human immunodeficiency virus-1: interim analysis of the randomized, controlled, phase 3, non-inferiority TALENT study.
Bin SU ; Cheng YAO ; Qing-Xia ZHAO ; Wei-Ping CAI ; Min WANG ; Hong-Zhou LU ; Yuan-Yuan CHEN ; Li LIU ; Hui WANG ; Yun HE ; Yu-Huang ZHENG ; Ling-Hua LI ; Jin-Feng CHEN ; Jian-Hua YU ; Biao ZHU ; Min ZHAO ; Yong-Tao SUN ; Wen-Hui LUN ; Wei XIA ; Li-Jun SUN ; Li-Li DAI ; Tai-Yi JIANG ; Mei-Xia WANG ; Qing-Shan ZHENG ; Hai-Yan PENG ; Yao WANG ; Rong-Jian LU ; Jian-Hua HU ; Hui XING ; Yi-Ming SHAO ; Dong XIE ; Tong ZHANG ; Fu-Jie ZHANG ; Hao WU
Chinese Medical Journal 2020;133(24):2919-2927
BACKGROUND:
Albuvirtide is a once-weekly injectable human immunodeficiency virus (HIV)-1 fusion inhibitor. We present interim data for a phase 3 trial assessing the safety and efficacy of albuvirtide plus lopinavir-ritonavir in HIV-1-infected adults already treated with antiretroviral drugs.
METHODS:
We carried out a 48-week, randomized, controlled, open-label non-inferiority trial at 12 sites in China. Adults on the World Health Organization (WHO)-recommended first-line treatment for >6 months with a plasma viral load >1000 copies/mL were enrolled and randomly assigned (1:1) to receive albuvirtide (once weekly) plus ritonavir-boosted lopinavir (ABT group) or the WHO-recommended second-line treatment (NRTI group). The primary endpoint was the proportion of patients with a plasma viral load below 50 copies/mL at 48 weeks. Non-inferiority was prespecified with a margin of 12%.
RESULTS:
At the time of analysis, week 24 data were available for 83 and 92 patients, and week 48 data were available for 46 and 50 patients in the albuvirtide and NRTI groups, respectively. At 48 weeks, 80.4% of patients in the ABT group and 66.0% of those in the NRTI group had HIV-1 RNA levels below 50 copies/mL, meeting the criteria for non-inferiority. For the per-protocol population, the superiority of albuvirtide over NRTI was demonstrated. The frequency of grade 3 to 4 adverse events was similar in the two groups; the most common adverse events were diarrhea, upper respiratory tract infections, and grade 3 to 4 increases in triglyceride concentration. Renal function was significantly more impaired at 12 weeks in the patients of the NRTI group who received tenofovir disoproxil fumarate than in those of the ABT group.
CONCLUSIONS:
The TALENT study is the first phase 3 trial of an injectable long-acting HIV drug. This interim analysis indicates that once-weekly albuvirtide in combination with ritonavir-boosted lopinavir is well tolerated and non-inferior to the WHO-recommended second-line regimen in patients with first-line treatment failure.
TRIAL REGISTRATION
ClinicalTrials.gov Identifier: NCT02369965; https://www.clinicaltrials.gov.Chinese Clinical Trial Registry No. ChiCTR-TRC-14004276; http://www.chictr.org.cn/enindex.aspx.
Adult
;
Anti-HIV Agents/adverse effects*
;
Antiretroviral Therapy, Highly Active
;
China
;
Drug Therapy, Combination
;
HIV Infections/drug therapy*
;
HIV-1
;
Humans
;
Maleimides
;
Peptides
;
Ritonavir/therapeutic use*
;
Treatment Outcome
;
Viral Load
2.Restoration of Cdk5, TrkB and Soluble N-ethylmaleimide-Sensitive Factor Attachment Protein Receptor Proteins after Chronic Methylphenidate Treatment in Spontaneous Hypertensive Rats, a Model for Attention-Deficit Hyperactivity Disorder
Yeni KIM ; Songhee JEON ; Ha Jin JEONG ; Seong Mi LEE ; Ike dela PEÑA ; Hee Jin KIM ; Doug Hyun HAN ; Bung Nyun KIM ; Jae Hoon CHEONG
Psychiatry Investigation 2019;16(7):558-564
OBJECTIVE: Synaptic vesicle mobilization and neurite outgrowth regulation molecules were examined in modulation of effects of methylphenidate (MPH) in Spontaneous Hypertensive Rats (SHRs), a model for attention-deficit hyperactivity disorder (ADHD). METHODS: We compared the changes in the protein expression level of Cyclin dependent kinase 5 (Cdk5) and molecular substrates of Cdk5; tropomyosin receptor kinase B (TrkB), syntaxin 1A (STX1A) and synaptosomal-associated protein 25 (SNAP25). Comparisons were made in prefrontal cortex of vehicle (distilled water i.p. for 7 days)-treated SHRs, vehicle-treated Wistar Kyoto Rats (WKYs) and MPH (2 mg/kg i.p. for 7 days) treated SHRs. RESULTS: The Cdk5 level of vehicle-treated SHRs was significantly decreased compared to the Cdk5 level of vehicle-treated WKY rats, but was restored to the expression level of vehicle-treated WKYs in MPH-treated SHR. The ratio of p25/p35 was significantly decreased in MPH-treated SHR compared to vehicle-treated SHR. Moreover, TrkB, STX1A and SNAP25 of vehicle-treated SHRs were significantly decreased compared to vehicle-treated WKY rats, but were restored to the expression level of vehicle-treated WKYs in MPH-treated SHR. CONCLUSION: The results show that Cdk5, TrkB, STX1A, and SNAP25 were involved in the modulation of MPH effects in prefrontal cortex of SHRs and play important role in treatment of ADHD.
Animals
;
Cyclin-Dependent Kinase 5
;
Methylphenidate
;
Neurites
;
Phosphotransferases
;
Prefrontal Cortex
;
Rats
;
Rats, Inbred WKY
;
Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins
;
Synaptic Vesicles
;
Synaptosomal-Associated Protein 25
;
Syntaxin 1
;
Tropomyosin
;
Water
3.Significance of Vesicle-Associated Membrane Protein 8 Expression in Predicting Survival in Breast Cancer.
Mengci YUAN ; Jianhua LIAO ; Ji LUO ; Mengyao CUI ; Feng JIN
Journal of Breast Cancer 2018;21(4):399-405
PURPOSE: Vesicle-associated membrane protein 8 (VAMP8) is a soluble N-ethylmaleimide-sensitive factor receptor protein that participates in autophagy by directly regulating autophagosome membrane fusion and has been reported to be involved in tumor progression. Nevertheless, the expression and prognostic value of VAMP8 in breast cancer (BC) remain unknown. This study aimed to evaluate the clinical significance and biological function of VAMP8 in BC. METHODS: A total of 112 BC samples and 30 normal mammary gland samples were collected. The expression of VAMP8 was assessed in both BC tissues and normal mammary gland tissues via a two-step immunohistochemical detection method. RESULTS: The expression of VAMP8 in BC tissues was significantly higher than that in normal breast tissues. Furthermore, increased VAMP8 expression was significantly correlated with tumor size (p=0.007), lymph node metastasis (p=0.024) and recurrence (p=0.001). Patients with high VAMP8 expression had significantly lower cumulative recurrence-free survival and overall survival (p < 0.001 for both) than patients with low VAMP8 expression. In multivariate logistic regression and Cox regression analyses, lymph node metastasis and VAMP8 expression were independent prognostic factors for BC. CONCLUSION: VAMP8 is significantly upregulated in human BC tissues and can thus be a practical and potentially effective surrogate marker for survival in BC patients.
Autophagy
;
Biomarkers
;
Breast Neoplasms*
;
Breast*
;
Humans
;
Logistic Models
;
Lymph Nodes
;
Mammary Glands, Human
;
Membrane Fusion
;
Methods
;
N-Ethylmaleimide-Sensitive Proteins
;
Neoplasm Metastasis
;
Prognosis
;
R-SNARE Proteins*
;
Recurrence
4.Parathyroid hormone inhibits the apoptosis of osteoblast MC-3T3E1 cells through a non-PLC-dependent protein kinase C pathway.
Shao-Yu HU ; Guo-Jun TONG ; Yue MENG ; Song HAO ; Wei LI ; Fu-Long XU ; You-Hua HE ; Jian-Ting CHEN ; De-Hong YANG
Journal of Southern Medical University 2016;36(6):785-789
OBJECTIVETo investigate the effect of the non-PLC-dependent protein kinase C (PKC) pathway of parathyroid hormone (PTH) on the apoptosis and proliferation of osteoblast MC-3T3E1 cells.
METHODSMC-3T3E1 cells were seeded in 96-well plates at the density of 1.5×10(4) cells/mL and incubated for 3 day. The cells were then exposed to 100 nmol/L of [Gly(1), Arg(19)]hPTH(1-28), 100 nmol/L of [Gly(1), Arg(19)]hPTH(1-34), 100 nmol/L of [Gly(1), Arg(19)]hPTH(1-34)+1 µmol/L Go6983, 1 µmol/L Go6983, or deionized water (control) for 1, 24 or 48 h. After the treatments, cell counting kit-8 (CCK-8) and Caspase-Glo® 3/7 Assay (Caspase-3) were used to examine the proliferation and apoptosis of MC3T3-E1 cells.
RESULTSCCK-8 results showed that hPTH(1-34) increased the number of MC3T3-E1 cells compared with hPTH(1-34)+Go6983 at 1 h and 24 h, but this difference was not statistically different. At 48 h, treatment with hPTH(1-34), as compared with hPTH(1-28), significantly increased the number of MC3T3-E1 cells (P<0.05), and this effect was blocked by the PKC inhibitor Go6983 (P<0.05). hPTH(1-34) did not result in significant inhibition of MC3T3-E1 cell apoptosis at 1 h and 24 h as compared with hPTH(1-34)+Go6983, but significantly inhibited the cell apoptosis as compared with hPTH(1-28) (P<0.05); this inhibitory effect was blocked by Go6983 (P<0.05).
CONCLUSIONs A relatively long time (for 48 h) of exposure to PTH can inhibit apoptosis and promote the proliferation of MC3T3-E1cells through a non-PLC-dependent PKC pathway.
3T3 Cells ; Animals ; Apoptosis ; Cell Proliferation ; Indoles ; pharmacology ; Maleimides ; pharmacology ; Mice ; Osteoblasts ; Parathyroid Hormone ; pharmacology ; Protein Kinase C ; antagonists & inhibitors ; metabolism ; Signal Transduction
5.Protein kinase C enhances the swelling-induced chloride current in human atrial myocytes.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):383-388
Swelling-activated chloride currents (ICl.swell) are thought to play a role in several physiologic and pathophysiologic processes and thus represent a target for therapeutic approaches. However, the mechanism of ICl.swell regulation remains unclear. In this study, we used the whole-cell patch-clamp technique to examine the role of protein kinase C (PKC) in the regulation of ICl.swell in human atrial myocytes. Atrial myocytes were isolated from the right atrial appendages of patients undergoing coronary artery bypass and enzymatically dissociated. ICl.swell was evoked in hypotonic solution and recorded using the whole-cell patch-clamp technique. The PKC agonist phorbol dibutyrate (PDBu) enhanced ICl.swell in a concentration-dependent manner, which was reversed in isotonic solution and by a chloride current inhibitor, 9-anthracenecarboxylicacid. Furthermore, the PKC inhibitor bis-indolylmaleimide attenuated the effect and 4α-PDBu, an inactive PDBu analog, had no effect on ICl.swell. These results, obtained using the whole-cell patch-clamp technique, demonstrate the ability of PKC to activate ICl,swell in human atrial myocytes. This observation was consistent with a previous study using a single-channel patch-clamp technique, but differed from some findings in other species.
Anthracenes
;
pharmacology
;
Chloride Channels
;
metabolism
;
Chlorides
;
agonists
;
antagonists & inhibitors
;
metabolism
;
Culture Media
;
metabolism
;
pharmacology
;
Dose-Response Relationship, Drug
;
Evoked Potentials
;
drug effects
;
physiology
;
Heart Atria
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Hypotonic Solutions
;
metabolism
;
pharmacology
;
Indoles
;
pharmacology
;
Ion Transport
;
drug effects
;
Maleimides
;
pharmacology
;
Myocytes, Cardiac
;
cytology
;
drug effects
;
metabolism
;
Patch-Clamp Techniques
;
Phorbol 12,13-Dibutyrate
;
pharmacology
;
Primary Cell Culture
;
Protein Kinase C
;
metabolism
6.Phorbol myristate acetate suppresses breast cancer cell growth via down-regulation of P-Rex1 expression.
Chuu-Yun A WONG ; Haihong JIANG ; Peter W ABEL ; Margaret A SCOFIELD ; Yan XIE ; Taotao WEI ; Yaping TU
Protein & Cell 2016;7(6):445-449
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
drug effects
;
Female
;
Guanine Nucleotide Exchange Factors
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Humans
;
Indoles
;
pharmacology
;
MCF-7 Cells
;
Maleimides
;
pharmacology
;
Protein Isoforms
;
genetics
;
metabolism
;
Protein Kinase C
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Receptor, ErbB-2
;
genetics
;
metabolism
;
Tetradecanoylphorbol Acetate
;
toxicity
7.Activation of phospholipase C-independent protein kinase C signaling pathway of parathyroid hormone enhances CITED1 expression in mouse osteoblasts.
Song HAO ; Yue MENG ; Wei LI ; Shao-Yu HU ; De-Hong YANG
Journal of Southern Medical University 2015;35(4):486-491
OBJECTIVETo explore the functions of phospholipase C (PLC)-independent protein kinase C signaling pathway (PTH/nonPLC/PKC) of parathyroid hormone (PTH) and its role in bone metabolism.
METHODSOsteoblasts isolated from the calvaria of 2- or 3-day-old C57BL mice, identified by alkaline phosphatase staining and Alizarin red staining, were treated for 4 h with 100 nmol/L [Gly(1), Arg(19)]hPTH(1-28) plus 10 nmol/L RP-cAMP, 10 nmol/L [Gly(1), Arg(19)]hPTH(1-34) plus 10 nmol/L RP-cAMP , 10 nmol/L PTH(1-34), or and 0.1% trifluoroacetic acid (TFA). The total RNA was then isolated for screening differentially expressed genes related to PTH/nonPLC/PKC pathway using Affymetrix mouse 12x135K gene expression profile microarray, and the identified genes were confirmed by real-time quantitative PCR. MC3T3-E1 cells treated with [Gly(1), Arg(19)]hPTH(1-28)+RP-cAMP, [Gly(1), Arg(19)]hPTH(1-34)+RP-cAMP, [Gly(1), Arg(19)]hPTH(1-34)+ RP-cAMP +100 nmol/L Go6983, or 0.1% TFA were also examined for GR(1-28)- or GR(1-34)-mediated gene expression changes using real-time quantitative PCR.
RESULTSAlizarin red staining visualized red mineralized nodules in the osteoblasts at 28 days of culture. According to the genechip results, we selected 56 target genes related to PTH/nonPLC/PKC pathway, among which CITED1 showed higher expressions in [Gly(1), Arg(19)]hPTH(1-34)+ RP-cAMP group than in both the control group and [Gly(1), Arg(19)]hPTH(1-28)+RP-cAMP group (P<0.05), and its expression was the highest in PTH(1-34) group (P<0.05). RT-PCR of MC3T3-E1 cells yielded consist results with those in the primary osteoblasts, and the cells treated with Go6983 (a PKC inhibitor) did not show GR(1-28)- or GR(1-34)-mediated differential expression of CITED1.
CONCLUSIONThe activation of PLC-independent protein kinase C signaling pathway of PTH enhances the expression of CITED1 in mouse osteoblasts to mediate the effect of PTH on bone metabolism, and this pathway is not dependent on the activation of PLC or PKA signaling.
Animals ; Cells, Cultured ; Indoles ; Maleimides ; Mice ; Mice, Inbred C57BL ; Nuclear Proteins ; physiology ; Osteoblasts ; physiology ; Parathyroid Hormone ; physiology ; Protein Kinase C ; physiology ; Signal Transduction ; Skull ; Trans-Activators ; physiology ; Type C Phospholipases
8.Role of glycogen synthase kinase 3β in maturation and function of murine myeloid dendritic cells in vitro.
Shuai CHU ; Haixia LI ; Xin LI ; Xia KANG ; Qingshui HUANG ; Hongxia WANG ; Yurong QIU
Journal of Southern Medical University 2015;35(12):1809-1814
OBJECTIVETo investigate the role of glycogen synthase kinase 3β (GSK-3β) in the maturation and function of murine bone marrow-derived dendritic cells (BMDCs).
METHODSMature DCs (mDCs) induced by LPS were examined for GSK-3β phosphorylation level with Western blotting before and after LPS exposure. To explore the role of GSK-3β in maturation and function of DCs, we added SB216763, a selective inhibitor of GSK-3β, in the cell culture of immature DCs (iDCs), and examined CD40 and CD86 expressions in the cells by flow cytometry and the expression of IL-6, IL-12 and IL-10 mRNA by real-time PCR; the changes of the immunogenicity of the cells was evaluated by mixed lymphocyte reaction. The expression of GSK-3β and RelB was examined by Western blotting in DC2.4 cells transfected with a lentiviral vector over-expressing murine GSK-3β gene.
RESULTSLPS exposure significantly lowered GSK-3β activity in iDCs as demonstrated by increased Ser9 phosphorylation and reduced Tyr216 phosphorylation. GSK-3β inhibition induced DC maturation by increasing the expression of surface costimulatory molecules CD40 and CD86, lowered the expressions of IL-6 and IL-12 while enhanced the expression of IL-10 in iDCs, and impaired mixed lymphocyte reaction of the cells. In DC2.4 cells, lentivirus-mediated over-expression of GSK-3β obviously down-regulated the expression of RelB.
CONCLUSIONSGSK-3β is a crucial enzyme involved in the differentiation and maintenance of an immature phenotype of DCs. GSK-3β is constitutively active in iDCs to inhibit their spontaneous maturation. DCs become phenotypically mature after inhibition of GSK-3β, which also executes a proinflammatory task in DC activation. The reduction of RelB protein levels as a result of GSK-3β overexpression supports GSK-3β as a new target for inducing tolerogenic DCs.
Animals ; B7-2 Antigen ; metabolism ; CD40 Antigens ; metabolism ; Cell Differentiation ; Cells, Cultured ; Culture Media ; chemistry ; Dendritic Cells ; enzymology ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Indoles ; chemistry ; Interleukin-10 ; metabolism ; Interleukin-12 ; metabolism ; Interleukin-6 ; metabolism ; Lentivirus ; Lymphocyte Culture Test, Mixed ; Maleimides ; chemistry ; Mice ; Myeloid Cells ; enzymology ; Phosphorylation ; RNA, Messenger ; Real-Time Polymerase Chain Reaction ; Signal Transduction
9.Roles of PKCβ/P66Shc oxidative stress signal pathway in mediating hyperoxia-induced ROS production in alveolar epithelial cells.
Zhong-Li CHE ; Wen-Bin DONG ; Qing-Ping LI ; Xiao-Ping LEI ; Lan KANG ; Lin GUO ; Xue-Song ZHAI ; Feng CHEN
Chinese Journal of Contemporary Pediatrics 2015;17(3):275-280
OBJECTIVETo explore the roles of PKCβ/P66Shc oxidative stress signal pathway in mediating hyperoxia-induced reactive oxgen species (ROS) production in alveolar epithelial cells (A549) and the protective effects of PKCβ inhibitor on hyperoxia-induced injuries of alveolar epithelial cells.
METHODSA549 cells were cultured in vitro and randomly divided into three groups: control, hyperoxia and PKCβ inhibitor LY333531 treatment. The hyperoxia group was exposed to a mixture of O2 (950 mL/L) and CO2 (50 mL/L) for 10 minutes and then cultured in a closed environment. The LY333531 group was treated with PKCβ inhibitor LY333531 of 10 µmol/L for 24 hours before hyperoxia induction. Cells were collected 24 hours after culture and the levels of PKCβ, Pin1, P66Shc and P66Shc-Ser36 were detected by Western blot. The intracellular translocation of P66Shc, the production of ROS and cellular mitochondria membrane potential were measured using the confocal microscopy.
RESULTSCompared with the control group, the levels of PKCβ, Pin1, P66Shc and P-P66Shc-Ser36 in A549 cells 24 hours after culture increased significantly in the hyperoxia group. These changes in the hyperoxia group were accompanied with an increased translocation rate of P66Shc from cytoplasm into mitochondria, an increased production of mitochondrial ROS, and a reduced mitochondrial membrane potential. Compared with the hyperoxia group, the levels of Pin1, P66Shc and P66Shc-Ser36 in A549 cells, the translocation rate of P66Shc from cytoplasm into mitochondria and the production of mitochondrial ROS decreased significantly, while the mitochondrial membrane potential increased significantly in the LY333531 treatment group. However, there were significant differences in the above mentioned measurements between the LY333531 treatment and control groups.
CONCLUSIONSHyperoxia can increase the expression of PKCβ in alveolar epithelial cells and production of mitochondrial ROS and decrease mitochondrial membrane potential. PKCβ inhibitor LY333531 can partially disrupt these changes and thus alleviate the hyperoxia-induced alveolar epithelial cell injury.
Cell Hypoxia ; Cells, Cultured ; Epithelial Cells ; metabolism ; Humans ; Indoles ; pharmacology ; Maleimides ; pharmacology ; Oxidative Stress ; Protein Kinase C beta ; physiology ; Pulmonary Alveoli ; cytology ; metabolism ; Reactive Oxygen Species ; metabolism ; Shc Signaling Adaptor Proteins ; physiology ; Signal Transduction ; physiology ; Src Homology 2 Domain-Containing, Transforming Protein 1
10.Identification of differentially expressed proteins and validation of the changes of N-ethylmaleimide-sensitive factor in rats with focal cerebral ischemia after transection of the cervical sympathetic trunk.
Yao QU ; Ke-ning MA ; Xing-zhi LI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(6):801-807
Stellate ganglion blockade (SGB) protects patients from focal cerebral ischemic injury, and transection of the cervical sympathetic trunk (TCST) in a rat model can mimic SGB in humans. The purpose of this study was to investigate the mechanisms underlying the neuroprotective effects of TCST on neuronal damage in the hippocampus in a rat model of middle cerebral artery occlusion (MCAO) in an attempt to elucidate the neuroprotective effects of SGB. The modified method of Zea Longa was used to establish the permanent MCAO model. Male Wistar rats were randomly divided into three groups: sham-operated group, MCAO group, and TCST group. The animals in TCST group were sacrificed 48 h after TCST which was performed after the establishment of the MCAO model. Proteins were extracted from the ipsilateral hippocampus and analyzed by two-dimensional difference gel electrophoresis (2D-DIGE) and peptide mass fingerprinting (PMF). The levels of N-ethylmaleimide-sensitive factor (NSF) were measured as well. The results showed that 11 types of proteins were identified by 2D-DIGE. The expressions of eight proteins were changed both in the sham-operated and TCST groups, and the expressions of the other three proteins were changed in all three groups. Moreover, the expression of NSF was higher in the TCST group than in the MCAO group but lower in the MCAO group than in sham-operated group. The ratio of NSF expression between the MCAO group and shamoperated group was -1.37 (P<0.05), whereas that between the TCST group and MCAO group was 1.35 (P<0.05). Our results imply that TCST increases the expression of NSF in the hippocampus of adult rats with focal cerebral ischemia, which may contribute to the protection of the injured brain. Our study provides a theoretical basis for the therapeutic application of SGB to patients with permanent cerebral ischemia.
Animals
;
Brain Injuries
;
genetics
;
metabolism
;
pathology
;
Brain Ischemia
;
genetics
;
metabolism
;
pathology
;
Gene Expression Regulation
;
Hippocampus
;
metabolism
;
pathology
;
Male
;
N-Ethylmaleimide-Sensitive Proteins
;
biosynthesis
;
genetics
;
Rats
;
Rats, Wistar
;
Stellate Ganglion
;
metabolism
;
pathology
;
Transfection

Result Analysis
Print
Save
E-mail