1.Impact of COVID-19 pandemic on the management of imported malaria in China.
Y LIU ; D WANG ; Z HE ; T ZHANG ; H YAN ; W LIN ; X ZHANG ; S LU ; Y LIU ; D WANG ; J LI ; W RUAN ; S LI ; H ZHANG
Chinese Journal of Schistosomiasis Control 2023;35(4):383-388
OBJECTIVE:
To examine the impact of COVID-19 pandemic on the epidemic status of imported malaria and national malaria control program in China, so as to provide insights into post-elimination malaria surveillance.
METHODS:
All data pertaining to imported malaria cases were collected from Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region during the period from January 1, 2018 through December 31, 2021. The number of malaria cases, species of malaria parasites, country where malaria parasite were infected, diagnosis and treatment after returning to China, and response were compared before (from January 1, 2018 to January 22, 2020) and after the COVID-19 pandemic (from January 23, 2020 to December 31, 2021).
RESULTS:
A total of 2 054 imported malaria cases were reported in Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region during the period from January 1, 2018 to December 31, 2021, and there were 1 722 cases and 332 cases reported before and after the COVID-19 pandemic, respectively. All cases were reported within one day after definitive diagnosis. The annual mean number of reported malaria cases reduced by 79.30% in Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region after the COVID-19 pandemic (171 cases) than before the pandemic (826 cases), and the number of monthly reported malaria cases significantly reduced in Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region since February 2020. There was a significant difference in the constituent ratio of species of malaria parasites among the imported malaria cases in Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region before and after the COVID-19 pandemic (χ2 = 146.70, P < 0.05), and P. falciparum malaria was predominant before the COVID-19 pandemic (72.30%), while P. ovale malaria (44.28%) was predominant after the COVID-19 pandemic, followed by P. falciparum malaria (37.65%). There was a significant difference in the constituent ratio of country where malaria parasites were infected among imported malaria cases in Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region before and after the COVID-19 pandemic (χ2 = 13.83, P < 0.05), and the proportion of malaria cases that acquired Plasmodium infections in western Africa reduced after the COVID-19 pandemic that before the pandemic (44.13% vs. 37.95%; χ2 = 4.34, P < 0.05), while the proportion of malaria cases that acquired Plasmodium infections in eastern Africa increased after the COVID-19 pandemic that before the pandemic (9.58% vs. 15.36%; χ2 = 9.88, P = 0.02). The proportion of completing case investigation within 3 days was significantly lower after the COVID-19 pandemic than before the pandemic (96.69% vs. 98.32%; χ2= 3.87, P < 0.05), while the proportion of finishing foci investigation and response within 7 days was significantly higher after the COVID-19 pandemic than before the pandemic (100.00% vs. 98.43%; χ2 = 3.95, P < 0.05).
CONCLUSIONS
The number of imported malaria cases remarkably reduced in Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region of China during the COVID-19 pandemic, with a decreased proportion of completing case investigations within 3 days. The sensitivity of the malaria surveillance-response system requires to be improved to prevent the risk of secondary transmission of malaria due to the sharp increase in the number of imported malaria cases following the change of the COVID-19 containment policy.
Humans
;
Pandemics
;
China/epidemiology*
;
Incidence
;
COVID-19/epidemiology*
;
Malaria/prevention & control*
;
Malaria, Falciparum/epidemiology*
2.An Alternative Method for Extracting Plasmodium DNA from EDTA Whole Blood for Malaria Diagnosis
Krongkaew SEESUI ; Kanokwan IMTAWIL ; Phimphakon CHANETMAHUN ; Porntip LAUMMAUNWAI ; Thidarut BOONMARS
The Korean Journal of Parasitology 2018;56(1):25-32
Molecular techniques have been introduced for malaria diagnosis because they offer greater sensitivity and specificity than microscopic examinations. Therefore, DNA isolation methods have been developed for easy preparation and cost effectiveness. The present study described a simple protocol for Plasmodium DNA isolation from EDTA-whole blood. This study demonstrated that after heating infected blood samples with Tris–EDTA buffer and proteinase K solution, without isolation and purification steps, the supernatant can be used as a DNA template for amplification by PCR. The sensitivity of the extracted DNA of Plasmodium falciparum and Plasmodium vivax was separately analyzed by both PCR and semi-nested PCR (Sn-PCR). The results revealed that for PCR the limit of detection was 40 parasites/μl for P. falciparum and 35.2 parasites/μl for P. vivax, whereas for Sn-PCR the limit of detection was 1.6 parasites/μl for P. falciparum and 1.4 parasites/μl for P. vivax. This new method was then verified by DNA extraction of whole blood from 11 asymptomatic Myanmar migrant workers and analyzed by Sn-PCR. The results revealed that DNA can be extracted from all samples, and there were 2 positive samples for Plasmodium (P. falciparum and P. vivax). Therefore, the protocol can be an alternative method for DNA extraction in laboratories with limited resources and a lack of trained technicians for malaria diagnosis. In addition, this protocol can be applied for subclinical cases, and this will be helpful for epidemiology and control.
Cost-Benefit Analysis
;
Diagnosis
;
DNA
;
Edetic Acid
;
Endopeptidase K
;
Epidemiology
;
Heating
;
Hot Temperature
;
Humans
;
Limit of Detection
;
Malaria
;
Methods
;
Myanmar
;
Plasmodium falciparum
;
Plasmodium vivax
;
Plasmodium
;
Polymerase Chain Reaction
;
Sensitivity and Specificity
;
Transients and Migrants
3.Coexistence of Malaria and Thalassemia in Malaria Endemic Areas of Thailand.
Jiraporn KUESAP ; W CHAIJAROENKUL ; K RUNGSIHIRUNRAT ; K PONGJANTHARASATIEN ; Kesara NA-BANGCHANG
The Korean Journal of Parasitology 2015;53(3):265-270
Hemoglobinopathy and malaria are commonly found worldwide particularly in malaria endemic areas. Thalassemia, the alteration of globin chain synthesis, has been reported to confer resistance against malaria. The prevalence of thalassemia was investigated in 101 malaria patients with Plasmodium falciparum and Plasmodium vivax along the Thai-Myanmar border to examine protective effect of thalassemia against severe malaria. Hemoglobin typing was performed using low pressure liquid chromatography (LPLC) and alpha-thalassemia was confirmed by multiplex PCR. Five types of thalassemia were observed in malaria patients. The 2 major types of thalassemia were Hb E (18.8%) and alpha-thalassemia-2 (11.9%). There was no association between thalassemia hemoglobinopathy and malaria parasitemia, an indicator of malaria disease severity. Thalassemia had no significant association with P. vivax infection, but the parasitemia in patients with coexistence of P. vivax and thalassemia was about 2-3 times lower than those with coexistence of P. falciparum and thalassemia and malaria without thalassemia. Furthermore, the parasitemia of P. vivax in patients with coexistence of Hb E showed lower value than coexistence with other types of thalassemia and malaria without coexistence. Parasitemia, hemoglobin, and hematocrit values in patients with coexistence of thalassemia other than Hb E were significantly lower than those without coexistence of thalassemia. Furthermore, parasitemia with coexistence of Hb E were 2 times lower than those with coexistence of thalassemia other than Hb E. In conclusion, the results may, at least in part, support the protective effect of thalassemia on the development of hyperparasitemia and severe anemia in malaria patients.
Female
;
Hemoglobins/genetics/metabolism
;
Humans
;
Malaria, Falciparum/blood/complications/*genetics/parasitology
;
Malaria, Vivax/blood/complications/*genetics/parasitology
;
Male
;
Middle Aged
;
Plasmodium falciparum/physiology
;
Plasmodium vivax/physiology
;
Thailand/epidemiology
;
Thalassemia/blood/complications/epidemiology/*genetics
4.High Malaria Prevalence among Schoolchildren on Kome Island, Tanzania.
Min Jae KIM ; Bong Kwang JUNG ; Jong Yil CHAI ; Keeseon S EOM ; Tai Soon YONG ; Duk Young MIN ; Julius E SIZA ; Godfrey M KAATANO ; Josephat KUBOZA ; Peter MNYESHI ; John M CHANGALUCHA ; Yunsuk KO ; Su Young CHANG ; Han Jong RIM
The Korean Journal of Parasitology 2015;53(5):571-574
In order to determine the status of malaria among schoolchildren on Kome Island (Lake Victoria), near Mwanza, Tanzania, a total of 244 schoolchildren in 10 primary schools were subjected to a blood survey using the fingerprick method. The subjected schoolchildren were 123 boys and 121 girls who were 6-8 years of age. Only 1 blood smear was prepared for each child. The overall prevalence of malaria was 38.1% (93 positives), and sex difference was not remarkable. However, the positive rate was the highest in Izindabo Primary School (51.4%) followed by Isenyi Primary School (48.3%) and Bugoro Primary School (46.7%). The lowest prevalence was found in Muungano Primary School (16.7%) and Nyamiswi Primary School (16.7%). These differences were highly correlated with the location of the school on the Island; those located in the peripheral area revealed higher prevalences while those located in the central area showed lower prevalences. Plasmodium falciparum was the predominant species (38.1%; 93/244), with a small proportion of them mixed-infected with Plasmodium vivax (1.6%; 4/244). The results revealed that malaria is highly prevalent among primary schoolchildren on Kome Island, Tanzania, and there is an urgent need to control malaria in this area.
Blood/parasitology
;
Child
;
Coinfection/epidemiology/parasitology
;
Cross-Sectional Studies
;
Female
;
Humans
;
Malaria/*epidemiology/parasitology
;
Male
;
Microscopy
;
Plasmodium falciparum/*isolation & purification
;
Plasmodium vivax/*isolation & purification
;
Prevalence
;
Tanzania/epidemiology
;
Topography, Medical
5.Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand.
Vorthon SAWASWONG ; Phumin SIMPALIPAN ; Napaporn SIRIPOON ; Pongchai HARNYUTTANAKORN ; Sittiporn PATTARADILOKRAT
The Korean Journal of Parasitology 2015;53(2):177-187
Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles coexisted, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines.
Antigens, Protozoan/*genetics
;
*Gene Frequency
;
*Genetic Variation
;
Genotype
;
Humans
;
Malaria, Falciparum/epidemiology/*parasitology
;
Plasmodium falciparum/classification/*genetics/isolation & purification
;
Polymorphism, Genetic
;
Protozoan Proteins/*genetics
;
Thailand/epidemiology
6.Prevalence and Clinical Manifestations of Malaria in Aligarh, India.
Umm E ASMA ; Farha TAUFIQ ; Wajihullah KHAN
The Korean Journal of Parasitology 2014;52(6):621-629
Malaria is one of the most widespread infectious diseases of tropical countries with an estimated 207 million cases globally. In India, there are endemic pockets of this disease, including Aligarh. Hundreds of Plasmodium falciparum and P. vivax cases with severe pathological conditions are recorded every year in this district. The aim of this study is to find out changes in liver enzymes and kidney markers. Specific diagnosis for P. falciparum and P. vivax was made by microscopic examination of Giemsa stained slides. Clinical symptoms were observed in both of these infections. Liver enzymes, such as AST, ALT, and ALP, and kidney function markers, such as creatinine and urea, were estimated by standard biochemical techniques. In Aligarh district, P. vivax, P. falciparum, and mixed infections were 64%, 34%, and 2%, respectively. In case of P. falciparum infection, the incidences of anemia, splenomegaly, renal failure, jaundice, and neurological sequelae were higher compared to those in P. vivax infection. Recrudescence and relapse rates were 18% and 20% in P. falciparum and P. vivax infections, respectively. Liver dysfunctions and renal failures were more common in P. falciparum patients, particularly in elderly patients. Artesunate derivatives must, therefore, be introduced for the treatment of P. falciparum as they resist to chloroquine as well as sulfadoxine-pyrimethamine combinations.
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Child
;
Child, Preschool
;
Clinical Laboratory Techniques
;
Female
;
Humans
;
India/epidemiology
;
Infant
;
Infant, Newborn
;
Kidney/physiopathology
;
Kidney Diseases/epidemiology/etiology
;
Kidney Function Tests
;
Liver/physiopathology
;
Liver Diseases/epidemiology/etiology
;
Liver Function Tests
;
Malaria, Falciparum/complications/*epidemiology/*pathology
;
Malaria, Vivax/complications/*epidemiology/*pathology
;
Male
;
Middle Aged
;
Prevalence
;
Recurrence
;
Young Adult
7.Evaluation of the Accuracy of the EasyTest(TM) Malaria Pf/Pan Ag, a Rapid Diagnostic Test, in Uganda.
Chom Kyu CHONG ; Pyo Yun CHO ; Byoung Kuk NA ; Seong Kyu AHN ; Jin Su KIM ; Jin Soo LEE ; Sung Keun LEE ; Eun Taek HAN ; Hak Yong KIM ; Yun Kyu PARK ; Seok Ho CHA ; Tong Soo KIM
The Korean Journal of Parasitology 2014;52(5):501-505
In recent years, rapid diagnostic tests (RDTs) have been widely used for malaria detection, primarily because of their simple operation, fast results, and straightforward interpretation. The Asan EasyTest(TM) Malaria Pf/Pan Ag is one of the most commonly used malaria RDTs in several countries, including Korea and India. In this study, we tested the diagnostic performance of this RDT in Uganda to evaluate its usefulness for field diagnosis of malaria in this country. Microscopic and PCR analyses, and the Asan EasyTest(TM) Malaria Pf/Pan Ag rapid diagnostic test, were performed on blood samples from 185 individuals with suspected malaria in several villages in Uganda. Compared to the microscopic analysis, the sensitivity of the RDT to detect malaria infection was 95.8% and 83.3% for Plasmodium falciparum and non-P. falciparum, respectively. Although the diagnostic sensitivity of the RDT decreased when parasitemia was < or =500 parasites/microl, it showed 96.8% sensitivity (98.4% for P. falciparum and 93.8% for non-P. falciparum) in blood samples with parasitemia > or =100 parasites/microl. The specificity of the RDT was 97.3% for P. falciparum and 97.3% for non-P. falciparum. These results collectively suggest that the accuracy of the Asan EasyTest(TM) Malaria Pf/Pan Ag makes it an effective point-of-care diagnostic tool for malaria in Uganda.
Adolescent
;
Adult
;
Antigens, Protozoan/blood/*isolation & purification
;
Child
;
Child, Preschool
;
Humans
;
Malaria, Falciparum/*diagnosis/epidemiology
;
Parasitemia
;
Point-of-Care Systems
;
Predictive Value of Tests
;
Reagent Kits, Diagnostic
;
Sensitivity and Specificity
;
Uganda/epidemiology
;
Young Adult
8.Nested-PCR and a New ELISA-Based NovaLisa Test Kit for Malaria Diagnosis in an Endemic Area of Thailand.
Pimwan THONGDEE ; Wanna CHAIJAROENKUL ; Jiraporn KUESAP ; Kesara NA-BANGCHANG
The Korean Journal of Parasitology 2014;52(4):377-381
Microscopy is considered as the gold standard for malaria diagnosis although its wide application is limited by the requirement of highly experienced microscopists. PCR and serological tests provide efficient diagnostic performance and have been applied for malaria diagnosis and research. The aim of this study was to investigate the diagnostic performance of nested PCR and a recently developed an ELISA-based new rapid diagnosis test (RDT), NovaLisa test kit, for diagnosis of malaria infection, using microscopic method as the gold standard. The performance of nested-PCR as a malaria diagnostic tool is excellent with respect to its high accuracy, sensitivity, specificity, and ability to discriminate Plasmodium species. The sensitivity and specificity of nested-PCR compared with the microscopic method for detection of Plasmodium falciparum, Plasmodium vivax, and P. falciparum/P. vivax mixed infection were 71.4 vs 100%, 100 vs 98.7%, and 100 vs 95.0%, respectively. The sensitivity and specificity of the ELISA-based NovaLisa test kit compared with the microscopic method for detection of Plasmodium genus were 89.0 vs 91.6%, respectively. NovaLisa test kit provided comparable diagnostic performance. Its relatively low cost, simplicity, and rapidity enables large scale field application.
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Coinfection/*diagnosis/epidemiology
;
Endemic Diseases
;
Enzyme-Linked Immunosorbent Assay/methods
;
Female
;
Humans
;
Malaria, Falciparum/*diagnosis/epidemiology
;
Malaria, Vivax/*diagnosis/epidemiology
;
Male
;
Middle Aged
;
Molecular Diagnostic Techniques/*methods
;
Polymerase Chain Reaction/*methods
;
Sensitivity and Specificity
;
Serologic Tests/methods
;
Thailand/epidemiology
;
Young Adult
9.The effects of co-infection with human parvovirus B19 and Plasmodium falciparum on type and degree of anaemia in Ghanaian children.
Kwabena Obeng DUEDU ; Kwamena William Coleman SAGOE ; Patrick Ferdinand AYEH-KUMI ; Raymond Bedu AFFRIM ; Theophilus ADIKU
Asian Pacific Journal of Tropical Biomedicine 2013;3(2):129-139
OBJECTIVETo determin the extent to which parvovirus B19 (B19V) and co-infection of B19V and malaria contribute to risk of anaemia in children.
METHODSB19V DNA and malaria parasites were screened for 234 children at the PML Children's Hospital in Accra. The role of B19V and co-infection with B19V and malaria in anaemia was evaluated by analysing full blood cell counts, malaria and B19V DNA results from these children.
RESULTSThe prevalence of B19V, malaria and co-infection with B19V and malaria was 4.7%, 41.9% and 2.6%, respectively. Malaria posed a greater risk in the development of mild anaemia compared to severe anaemia (OR=5.28 vrs 3.15) whereas B19V posed a higher risk in the development of severe anaemia compared to mild anaemia (OR=4.07 vrs 1.00) from a non-anaemic child. Persons with co-infection with B19V and malaria had 2.23 times the risk (95% CI=0.40-12.54) of developing severe anaemia should they already have a mild anaemia. The degree of anaemia was about three times affected by co-infection (Pillai's trace=0.551, P=0.001) as was affected by malaria alone (Pillai's trace=0.185, P=0.001). B19V alone did not significantly affect the development of anaemia in a non-anaemic child. Microcytic anaemia was associated with B19V and co-infection with B19V and malaria more than normocytic normochromic anaemia.
CONCLUSIONSB19V was associated with malaria in cases of severe anaemia. The association posed a significant risk for exacerbation of anaemia in mild anaemic children. B19V and co-infection with B19V and malaria may be associated with microcytic anaemia rather than normocytic normochromic anaemia as seen in cases of B19V infection among persons with red cell abnormalities.
Adolescent ; Anemia ; epidemiology ; etiology ; parasitology ; virology ; Child ; Child, Preschool ; Coinfection ; complications ; epidemiology ; parasitology ; physiopathology ; virology ; Female ; Ghana ; epidemiology ; Humans ; Infant ; Malaria, Falciparum ; complications ; epidemiology ; physiopathology ; Male ; Parvoviridae Infections ; complications ; epidemiology ; physiopathology ; Parvovirus B19, Human ; isolation & purification ; physiology ; Plasmodium falciparum ; isolation & purification ; physiology ; Polymerase Chain Reaction ; Prevalence ; Risk Factors
10.Evaluation of Rapid Diagnostics for Plasmodium falciparum and P. vivax in Mae Sot Malaria Endemic Area, Thailand.
Wanna CHAIJAROENKUL ; Thanee WONGCHAI ; Ronnatrai RUANGWEERAYUT ; Kesara NA-BANGCHANG
The Korean Journal of Parasitology 2011;49(1):33-38
Prompt and accurate diagnosis of malaria is the key to prevent disease morbidity and mortality. This study was carried out to evaluate diagnostic performance of 3 commercial rapid detection tests (RDTs), i.e., Malaria Antigen Pf/Pantrade mark, Malaria Ag-Pftrade mark, and Malaria Ag-Pvtrade mark tests, in comparison with the microscopic and PCR methods. A total of 460 blood samples microscopically positive for Plasmodium falciparum (211 samples), P. vivax (218), mixed with P. falciparum and P. vivax (30), or P. ovale (1), and 124 samples of healthy subjects or patients with other fever-related infections, were collected. The sensitivities of Malaria Ag-Pftrade mark and Malaria Antigen Pf/Pantrade mark compared with the microscopic method for P. falciparum or P. vivax detection were 97.6% and 99.0%, or 98.6% and 99.0%, respectively. The specificities of Malaria Ag-Pftrade mark, Malaria Ag-Pvtrade mark, and Malaria Antigen Pf/Pantrade mark were 93.3%, 98.8%, and 94.4%, respectively. The sensitivities of Malaria Ag-Pftrade mark, Malaria Antigen Pf/Pantrade mark, and microscopic method, when PCR was used as a reference method for P. falciparum or P. vivax detection were 91.8%, 100%, and 96.7%, or 91.9%, 92.6%, and 97.3%, respectively. The specificities of Malaria Ag-Pftrade mark, Malaria Ag-Pvtrade mark, Malaria Antigen Pf/Pantrade mark, and microscopic method were 66.2%, 92.7%, 73.9%, and 78.2%, respectively. Results indicated that the diagnostic performances of all the commercial RDTs are satisfactory for application to malaria diagnosis.
Antigens, Protozoan/blood
;
Cross-Sectional Studies
;
*Diagnostic Techniques and Procedures/instrumentation
;
Endemic Diseases/statistics & numerical data
;
Humans
;
Malaria/*diagnosis/epidemiology/parasitology
;
Malaria, Vivax
;
Plasmodium falciparum/genetics/immunology/*isolation & purification
;
Reagent Kits, Diagnostic
;
Thailand/epidemiology

Result Analysis
Print
Save
E-mail