1.Inositol 1,4,5-triphosphate receptor 3 promotes renal cyst development in autosomal dominant polycystic kidney disease.
Zhi-Wei QIU ; Ming LIU ; Hong ZHOU ; Bao-Xue YANG
Acta Physiologica Sinica 2023;75(3):328-338
The purpose of the present study was to determine the role of inositol 1,4,5-trisphosphate receptor 3 (IP3R3) in renal cyst development in autosomal dominant polycystic kidney disease (ADPKD). 2-aminoethoxy-diphenyl borate (2-APB) and shRNA were used to suppress the expression of IP3R3. The effect of IP3R3 on cyst growth was investigated in Madin-Darby canine kidney (MDCK) cyst model, embryonic kidney cyst model and kidney specific Pkd1 knockout (PKD) mouse model. The underlying mechanism of IP3R3 in promoting renal cyst development was investigated by Western blot and immunofluorescence staining. The results showed that the expression level of IP3R3 was significantly increased in the kidneys of PKD mice. Inhibiting IP3R3 by 2-APB or shRNA significantly retarded cyst expansion in MDCK cyst model and embryonic kidney cyst model. Western blot and immunofluorescence staining results showed that hyperactivated cAMP-PKA signaling pathway in the growth process of ADPKD cyst promoted the expression of IP3R3, which was accompanied by a subcellular redistribution process in which IP3R3 was translocated from endoplasmic reticulum to intercellular junction. The abnormal expression and subcellular localization of IP3R3 further promoted cyst epithelial cell proliferation by activating MAPK and mTOR signaling pathways and accelerating cell cycle. These results suggest that the expression and subcellular distribution of IP3R3 are involved in promoting renal cyst development, which implies IP3R3 as a potential therapeutic target of ADPKD.
Animals
;
Dogs
;
Mice
;
Cysts/genetics*
;
Inositol 1,4,5-Trisphosphate Receptors/pharmacology*
;
Kidney/metabolism*
;
Polycystic Kidney Diseases/metabolism*
;
Polycystic Kidney, Autosomal Dominant/drug therapy*
;
Madin Darby Canine Kidney Cells
2.Transglutaminase 2 inhibits the proliferation of H1 subtype influenza virus in MDCK cells.
Shouqing GUO ; Yuejiao LIAO ; Zhenyu QIU ; Geng LIU ; Jiamin WANG ; Di YANG ; Jiayou ZHANG ; Zilin QIAO ; Zhongren MA ; Zhuo LI ; Zhenbin LIU
Chinese Journal of Biotechnology 2022;38(3):1124-1137
Transglutaminase 2 (TGM2) is a ubiquitous multifunctional protein, which is related to the adhesion of different cells and tumor formation. Previous studies found that TGM2 is involved in the interaction between host cells and viruses, but the effect of TGM2 on the proliferation of influenza virus in cells has not been reported. To explore the effect of TGM2 during H1N1 subtype influenza virus infection, a stable MDCK cell line with TGM2 overexpression and a knockout cell line were constructed. The mRNA and protein expression levels of NP and NS1 as well as the virus titer were measured at 48 hours after pot-infection with H1N1 subtype influenza virus. The results showed that overexpression of TGM2 effectively inhibited the expression of NP and NS1 genes of H1N1 subtype influenza virus, while knockout of TGM2 up-regulated the expression of the NP and NS1 genes, and the expression of the NP at protein level was consistent with that at mRNA level. Virus proliferation curve showed that the titer of H1N1 subtype influenza virus decreased significantly upon TGM2 overexpression. On the contrary, the virus titer in TGM2 knockout cells reached the peak at 48 h, which further proved that TGM2 was involved in the inhibition of H1N1 subtype influenza virus proliferation in MDCK cells. By analyzing the expression of genes downstream of influenza virus response signaling pathway, we found that TGM2 may inhibit the proliferation of H1N1 subtype influenza virus by promoting the activation of JAK-STAT molecular pathway and inhibiting RIG-1 signaling pathway. The above findings are of great significance for revealing the mechanism underlying the interactions between host cells and virus and establishing a genetically engineering cell line for high-yield influenza vaccine production of influenza virus.
Animals
;
Cell Proliferation
;
Dogs
;
Humans
;
Influenza A Virus, H1N1 Subtype/genetics*
;
Influenza, Human
;
Madin Darby Canine Kidney Cells
;
Protein Glutamine gamma Glutamyltransferase 2
3.TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2.
Nan SUN ; Li JIANG ; Miaomiao YE ; Yihan WANG ; Guangwen WANG ; Xiaopeng WAN ; Yuhui ZHAO ; Xia WEN ; Libin LIANG ; Shujie MA ; Liling LIU ; Zhigao BU ; Hualan CHEN ; Chengjun LI
Protein & Cell 2020;11(12):894-914
Tripartite motif (TRIM) family proteins are important effectors of innate immunity against viral infections. Here we identified TRIM35 as a regulator of TRAF3 activation. Deficiency in or inhibition of TRIM35 suppressed the production of type I interferon (IFN) in response to viral infection. Trim35-deficient mice were more susceptible to influenza A virus (IAV) infection than were wild-type mice. TRIM35 promoted the RIG-I-mediated signaling by catalyzing Lys63-linked polyubiquitination of TRAF3 and the subsequent formation of a signaling complex with VISA and TBK1. IAV PB2 polymerase countered the innate antiviral immune response by impeding the Lys63-linked polyubiquitination and activation of TRAF3. TRIM35 mediated Lys48-linked polyubiquitination and proteasomal degradation of IAV PB2, thereby antagonizing its suppression of TRAF3 activation. Our in vitro and in vivo findings thus reveal novel roles of TRIM35, through catalyzing Lys63- or Lys48-linked polyubiquitination, in RIG-I antiviral immunity and mechanism of defense against IAV infection.
A549 Cells
;
Animals
;
Apoptosis Regulatory Proteins/immunology*
;
DEAD Box Protein 58/immunology*
;
Dogs
;
HEK293 Cells
;
Humans
;
Influenza A Virus, H1N1 Subtype/immunology*
;
Madin Darby Canine Kidney Cells
;
Mice
;
Mice, Knockout
;
Orthomyxoviridae Infections/pathology*
;
Proteolysis
;
RAW 264.7 Cells
;
Signal Transduction/immunology*
;
THP-1 Cells
;
TNF Receptor-Associated Factor 3/immunology*
;
Ubiquitination/immunology*
;
Viral Proteins/immunology*
4.Immunogenicity of a new, inactivated canine adenovirus type 2 vaccine for dogs
Dong Kun YANG ; Ha Hyun KIM ; Jae Young YOO ; Miryeon JI ; Bok Hee HAN ; Subin OH ; Bang Hun HYUN
Clinical and Experimental Vaccine Research 2020;9(1):40-47
canine adenovirus type 2 (CAV-2) vaccine candidate using the recently isolated Korean CAV-2 strain; we termed the vaccine APQA1701-40P and evaluated its safety and immunogenicity in dogs.MATERIALS AND METHODS: To generate the anti-CAV-2 vaccine, APQA1701 was passaged 40 times in MDCK cells growing in medium containing 5 mM urea and the virus was inactivated using 0.05% (volume per volume) formaldehyde. Two vaccines were prepared by blending inactivated APQA1701-40P with two different adjuvants; both were intramuscularly injected (twice) into guinea pigs. The safety and immunogenicity of the Cabopol-adjuvanted vaccine were evaluated in seronegative dogs. The humoral responses elicited were measured using an indirect enzyme-linked immunosorbent assay (I-ELISA), and via a virus neutralization assay (VNA).RESULTS: The new, inactivated CAV-2 vaccine strain, APQA1701-40P, lacked six amino acids of the E1b-19K protein. In guinea pigs, the Cabopol-adjuvanted vaccine afforded a slightly higher VNA titer and I-ELISA absorbance than an IMS gel-adjuvanted vaccine 4 weeks post-vaccination (p>0.05). Dogs inoculated with the former vaccine developed a significantly higher immune titer than non-vaccinated dogs.CONCLUSION: The Cabopol-adjuvanted, inactivated CAV-2 vaccine was safe and induced a high VNA titer in dogs.]]>
Adenoviruses, Canine
;
Amino Acids
;
Animals
;
Dogs
;
Enzyme-Linked Immunosorbent Assay
;
Formaldehyde
;
Guinea Pigs
;
Madin Darby Canine Kidney Cells
;
Urea
;
Vaccines
5.Recharacterization of the Canine Adenovirus Type 1 Vaccine Strain based on the Biological and Molecular Properties
Dong Kun YANG ; Ha Hyun KIM ; Eun Jin LEE ; Jae Young YOO ; Soon Seek YOON ; Jungwon PARK ; Chae Hyun KIM ; Ho Ryoung KIM
Journal of Bacteriology and Virology 2019;49(3):124-132
Canine adenovirus type 1 (CAV-1) infection results in hepatitis in dogs. In this study, we investigated the biologic and genetic characteristics of the CAV-1 vaccine strain (CAV1V) to improve quality control about CAV vaccine. The identity of CAV1V as CAV-1 was confirmed based on its cytopathic effects and the results of hemagglutination (HA) and immunofluorescence assays, and electron microscopy. The CAV1V strain reached 10(7.5) TCID(50)/mL in MDCK cells at 4 days post-inoculation and exhibited hemmagglutination activity of 256 U using guinea pig erythrocytes. Intranuclear fluorescence in the infected cells was observed and typical adenoviruses were observed in electon microscope. CAV1V strain was identified as a CAV-1 strain by nucleotide sequence analysis. In a comparison of the nucleotide sequences of the fiber genes of several CAV strains, CAV1V showed the highest similarity (99.8%) with the GLAXO strain, which was isolated in Canada. Our biological characterization of CAV1V will facilitate quality control of the canine hepatitis vaccine.
Adenoviridae
;
Adenoviruses, Canine
;
Animals
;
Base Sequence
;
Canada
;
Dogs
;
Erythrocytes
;
Fluorescence
;
Fluorescent Antibody Technique
;
Guinea Pigs
;
Hemagglutination
;
Hepatitis
;
Madin Darby Canine Kidney Cells
;
Microscopy, Electron
;
Quality Control
6.Enhanced water solubility, antioxidant activity, and oral absorption of hesperetin by D-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine.
Su-Fang GU ; Li-Ying WANG ; Ying-Jie TIAN ; Zhu-Xian ZHOU ; Jian-Bin TANG ; Xiang-Rui LIU ; Hai-Ping JIANG ; You-Qing SHEN
Journal of Zhejiang University. Science. B 2019;20(3):273-281
Hesperetin, an abundant bioactive component of citrus fruits, is poorly water-soluble, resulting in low oral bioavailability. We developed new formulations to improve the water solubility, antioxidant activity, and oral absorption of hesperetin. Two nano-based formulations were developed, namely hesperetin-TPGS (D-α-tocopheryl polyethylene glycol 1000 succinate) micelles and hesperetin-phosphatidylcholine (PC) complexes. These two formulations were prepared by a simple technique called solvent dispersion, using US Food and Drug Administration (FDA)-approved excipients for drugs. Differential scanning calorimetry (DSC) and dynamic light scattering (DLS) were used to characterize the formulations' physical properties. Cytotoxicity analysis, cellular antioxidant activity assay, and a pharmacokinetic study were performed to evaluate the biological properties of these two formulations. The final weight ratios of both hesperetin to TPGS and hesperetin to PC were 1:12 based on their water solubility, which increased to 21.5- and 20.7-fold, respectively. The hesperetin-TPGS micelles had a small particle size of 26.19 nm, whereas the hesperetin-PC complexes exhibited a larger particle size of 219.15 nm. In addition, the cellular antioxidant activity assay indicated that both hesperetin-TPGS micelles and hesperetin-PC complexes increased the antioxidant activity of hesperetin to 4.2- and 3.9-fold, respectively. Importantly, the in vivo oral absorption study on rats indicated that the micelles and complexes significantly increased the peak plasma concentration (Cmax) from 2.64 μg/mL to 20.67 and 33.09 μg/mL and also increased the area under the concentration-time curve of hesperetin after oral administration to 16.2- and 18.0-fold, respectively. The micelles and complexes increased the solubility and remarkably improved the in vitro antioxidant activity and in vivo oral absorption of hesperetin, indicating these formulations' potential applications in drugs and healthcare products.
Administration, Oral
;
Animals
;
Antioxidants/chemistry*
;
Biological Availability
;
Calorimetry, Differential Scanning
;
Dogs
;
Dose-Response Relationship, Drug
;
Drug Carriers
;
Female
;
Hep G2 Cells
;
Hesperidin/chemistry*
;
Humans
;
Light
;
Madin Darby Canine Kidney Cells
;
Micelles
;
Phosphatidylcholines/chemistry*
;
Polyethylene Glycols/chemistry*
;
Rats
;
Rats, Sprague-Dawley
;
Scattering, Radiation
;
Solubility
;
Solvents
;
Vitamin E/chemistry*
;
Water/chemistry*
;
alpha-Tocopherol/chemistry*
7.Isolation and identification of canine adenovirus type 2 from a naturally infected dog in Korea
Dong Kun YANG ; Ha Hyun KIM ; Soon Seek YOON ; Hyunkyoung LEE ; In Soo CHO
Korean Journal of Veterinary Research 2018;58(4):177-182
Canine adenovirus type 2 (CAV-2) infection results in significant respiratory illness in dogs. Isolating and culturing CAV-2 allows for investigations into its pathogenesis and the development of vaccines and diagnostic assays. In this study, we successfully isolated a virus from a naturally infected dog in Gyeonggi-do, Korea. The virus was propagated in Madin-Darby canine kidney (MDCK) and Vero cells and showed a specific cytopathic morphology that appeared similar to a bunch of grapes. The virus was first confirmed as CAV-2 based on these cytopathic effects, an immunofluorescence assay, hemagglutination assay, and electron microscopy. The viral titer of the isolate designated APQA1601 reached 10(6.5) 50% tissue culture infections dose per mL in MDCK cells and exhibited no hemagglutination units with erythrocytes from guinea pig. The virus was also confirmed by polymerase chain reaction and next-generation sequencing. The APQA1601 strain had the highest similarity (~99.9%) with the Toronto A26/61 strain, which was isolated in Canada in 1976 when the nucleotide sequences of the full genome of the APQA1601 strain were compared with those of other CAV strains. Isolating CAV-2 will help elucidate the biological properties of CAV-2 circulating in Korean dogs.
Adenoviruses, Canine
;
Animals
;
Base Sequence
;
Canada
;
Dogs
;
Erythrocytes
;
Fluorescent Antibody Technique
;
Genome
;
Guinea Pigs
;
Gyeonggi-do
;
Hemagglutination
;
Kidney
;
Korea
;
Madin Darby Canine Kidney Cells
;
Microscopy, Electron
;
Polymerase Chain Reaction
;
Vaccines
;
Vero Cells
;
Vitis
8.Effect and mechanism of Mahuang Tang against influenza A/H1N1 virus .
Wen-Yang WEI ; Hai-Tong WAN ; Li YU ; Yi-Yu LU ; Yu HE
China Journal of Chinese Materia Medica 2018;43(3):563-570
To study the effect and underlying mechanism of Mahuang Tang against influenza A virus , the influenza virus-infected Madin-Darby canine kidney(MDCK) cells were used as the carrier in this study to detect the median tissue culture-infective dose(TCID₅₀) of influenza A virus strains(A/PR8/34) on MDCK cells with cytopathic effect(CPE) assay. Blocking influenza virus invading host cells and anti-influenza virus biosynthesis were used as two different administration methods, and then the methyl thiazolyl tetrazolium(MTT) assay was utilized to determine the antiviral effective rate(ER), median efficacious concentration(EC₅₀) and therapeutic index(TI) of Mahuang Tang. The quantitative Real-time polymerase chain reaction(RT-PCR) was used to measure virus load and the mRNA expression levels of TLR4, TLR7, MyD88 and TRAF6 in MDCK cells at 24, 48 h after the treatment. The experiment results indicated that TCID₅₀ of A/PR8/34 for MDCK cells was 1×10-4.32/mL. The EC₅₀ values of two different treatment methods were 4.92,1.59 g·L⁻¹ respectively, the TI values were 12.53, 38.78 respectively, and when the concentration of Mahuang Tang was 5.00 g·L⁻¹, ER values were 50.21%, 98.41% respectively, showing that Mahuang Tang can block influenza virus into the host cells and significantly inhibit their biosynthesis. Meanwhile, as compared with the virus group, the virus load was significantly inhibited in Mahuang Tang groups, and Mahuang Tang high and middle doses had the significant effect on decreasing the mRNA expression of TLR4, TLR7,MyD88 and TRAF6 at 24, 48 h after the treatment. It can be demonstrated that the mechanisms of Mahuang Tang against influenza A virus are related to the inhibition of influenza virus replication and the mRNA expression of correlative genes in TLR4 and TLR7 signaling pathways.
Animals
;
Antiviral Agents
;
pharmacology
;
Dogs
;
Drugs, Chinese Herbal
;
pharmacology
;
Influenza A Virus, H1N1 Subtype
;
drug effects
;
physiology
;
Madin Darby Canine Kidney Cells
;
Orthomyxoviridae Infections
;
Toll-Like Receptor 4
;
metabolism
;
Toll-Like Receptor 7
;
metabolism
;
Virus Replication
;
drug effects
9.Detection of Autoantibodies against Aquaporin-1 in the Sera of Patients with Primary Sjögren's Syndrome.
Jehan ALAM ; Yun Sik CHOI ; Jung Hee KOH ; Seung Ki KWOK ; Sung Hwan PARK ; Yeong Wook SONG ; Kyungpyo PARK ; Youngnim CHOI
Immune Network 2017;17(2):103-109
The pathophysiology of glandular dysfunction in Sjögren's syndrome (SS) has not been fully elucidated. Previously, we reported the presence of autoantibodies to AQP-5 in patients with SS, which was associated with a low resting salivary flow. The purpose of this study was to investigate the presence of anti-AQP1 autoantibodies. To detect anti-AQP1 autoantibodies, cell-based indirect immunofluorescence assay was developed using MDCK cells that overexpressed human AQP1. By screening 112 SS and 52 control sera, anti-AQP1 autoantibodies were detected in 27.7% of the SS but in none of the control sera. Interestingly, the sera that were positive for anti-AQP1 autoantibodies also contained anti-AQP5 autoantibodies in the previous study. Different from anti-AQP5 autoantibodies, the presence of anti-AQP1 autoantibodies was not associated with the salivary flow rate. Although anti-AQP1 autoantibodies are not useful as a diagnostic marker, the presence of autoantibodies to AQP1 may be an obstacle to AQP1 gene therapy for SS.
Aquaporin 1
;
Autoantibodies*
;
Fluorescent Antibody Technique
;
Fluorescent Antibody Technique, Indirect
;
Genetic Therapy
;
Humans
;
Madin Darby Canine Kidney Cells
;
Mass Screening
10.Mechanism for ginkgolic acid (15 : 1)-induced MDCK cell necrosis: Mitochondria and lysosomes damages and cell cycle arrest.
Qing-Qing YAO ; Zhen-Hua LIU ; Ming-Cheng XU ; Hai-Hong HU ; Hui ZHOU ; Hui-Di JIANG ; Lu-Shan YU ; Su ZENG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(5):375-383
Ginkgolic acids (GAs), primarily found in the leaves, nuts, and testa of ginkgo biloba, have been identified with suspected allergenic, genotoxic and cytotoxic properties. However, little information is available about GAs toxicity in kidneys and the underlying mechanism has not been thoroughly elucidated so far. Instead of GAs extract, the renal cytotoxicity of GA (15 : 1), which was isolated from the testa of Ginkgo biloba, was assessed in vitro by using MDCK cells. The action of GA (15 : 1) on cell viability was evaluated by the MTT and neutral red uptake assays. Compared with the control, the cytotoxicity of GA (15 : 1) on MDCK cells displayed a time- and dose-dependent manner, suggesting the cells mitochondria and lysosomes were damaged. It was confirmed that GA (15 : 1) resulted in the loss of cells mitochondrial trans-membrane potential (ΔΨm). In propidium iodide (PI) staining analysis, GA (15 : 1) induced cell cycle arrest at the G0/G1 and G2/M phases, influencing on the DNA synthesis and cell mitosis. Characteristics of necrotic cell death were observed in MDCK cells at the experimental conditions, as a result of DNA agarose gel electrophoresis and morphological observation of MDCK cells. In conclusion, these findings might provide useful information for a better understanding of the GA (15 : 1) induced renal toxicity.
Animals
;
Apoptosis
;
drug effects
;
Cell Cycle Checkpoints
;
drug effects
;
Cell Survival
;
drug effects
;
Dogs
;
Ginkgo biloba
;
chemistry
;
toxicity
;
Lysosomes
;
drug effects
;
metabolism
;
Madin Darby Canine Kidney Cells
;
Mitochondria
;
drug effects
;
metabolism
;
Necrosis
;
drug therapy
;
metabolism
;
physiopathology
;
Plant Extracts
;
toxicity
;
Salicylates
;
chemistry
;
toxicity

Result Analysis
Print
Save
E-mail