1.Caprylic Acid Improves Lipid Metabolism, Suppresses the Inflammatory Response and Activates the ABCA1/p-JAK2/p-STAT3 Signaling Pathway in C57BL/6J Mice and RAW264.7 Cells.
Xin Sheng ZHANG ; Peng ZHANG ; Ying Hua LIU ; Qing XU ; Yong ZHANG ; Hui Zi LI ; Lu LIU ; Yu Meng LIU ; Xue Yan YANG ; Chang Yong XUE
Biomedical and Environmental Sciences 2022;35(2):95-106
		                        		
		                        			OBJECTIVE:
		                        			This study aimed to investigate the effects of caprylic acid (C8:0) on lipid metabolism and inflammation, and examine the mechanisms underlying these effects in mice and cells.
		                        		
		                        			METHODS:
		                        			Fifty-six 6-week-old male C57BL/6J mice were randomly allocated to four groups fed a high-fat diet (HFD) without or with 2% C8:0, palmitic acid (C16:0) or eicosapentaenoic acid (EPA). RAW246.7 cells were randomly divided into five groups: normal, lipopolysaccharide (LPS), LPS+C8:0, LPS+EPA and LPS+cAMP. The serum lipid profiles, inflammatory biomolecules, and ABCA1 and JAK2/STAT3 mRNA and protein expression were measured.
		                        		
		                        			RESULTS:
		                        			C8:0 decreased TC and LDL-C, and increased the HDL-C/LDL-C ratio after injection of LPS. Without LPS, it decreased TC in mice ( P < 0.05). Moreover, C8:0 decreased the inflammatory response after LPS treatment in both mice and cells ( P < 0.05). Mechanistic investigations in C57BL/6J mouse aortas after injection of LPS indicated that C8:0 resulted in higher ABCA1 and JAK2/STAT3 expression than that with HFD, C16:0 and EPA, and resulted in lower TNF-α, NF-κB mRNA expression than that with HFD ( P < 0.05). In RAW 264.7 cells, C8:0 resulted in lower expression of pNF-κBP65 than that in the LPS group, and higher protein expression of ABCA1, p-JAK2 and p-STAT3 than that in the LPS and LPS+cAMP groups ( P < 0.05).
		                        		
		                        			CONCLUSION
		                        			Our studies demonstrated that C8:0 may play an important role in lipid metabolism and the inflammatory response, and the mechanism may be associated with ABCA1 and the p-JAK2/p-STAT3 signaling pathway.
		                        		
		                        		
		                        		
		                        			ATP Binding Cassette Transporter 1/immunology*
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Caprylates/chemistry*
		                        			;
		                        		
		                        			Cholesterol/metabolism*
		                        			;
		                        		
		                        			Diet, High-Fat/adverse effects*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation/metabolism*
		                        			;
		                        		
		                        			Janus Kinase 2/immunology*
		                        			;
		                        		
		                        			Lipid Metabolism/drug effects*
		                        			;
		                        		
		                        			Macrophages/immunology*
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			RAW 264.7 Cells
		                        			;
		                        		
		                        			STAT3 Transcription Factor/immunology*
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
2.Effects of electroacupuncture pretreatment on cardiac function and immune inflammatory response in mice with acute myocardial ischemia.
Tao ZHANG ; Yu CHEN ; Rong-Huang LI ; Ya-Ling WANG ; Shu-Ping FU ; Ye YANG ; Bin XU ; Sheng-Feng LU
Chinese Acupuncture & Moxibustion 2020;40(6):635-639
		                        		
		                        			OBJECTIVE:
		                        			To observe the effects of electroacupuncture (EA) pretreatment on the cardiac ejection fraction (EF), the number of macrophages in spleen and heart, and the expression of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) and interleukin-1β (IL-1β) in myocardium in mice with acute myocardial ischemia, and to explore the possible mechanism of EA pretreatment on promoting myocardial protection.
		                        		
		                        			METHODS:
		                        			A total of 30 male C57BL/6J mice were randomly divided into a control group, a model group and an EA pretreatment group, 10 rats in each group. The acute myocardial ischemia model was established by ligating the left anterior descending branch of the coronary artery in the model group and EA pretreatment group, while threading but no ligating at left anterior descending branch of the coronary artery was applied in the control group. In the EA pretreatment group, mice were intervented with EA at bilateral "Neiguan" (PC 6), disperse-dense wave, frequency of 2 Hz/15 Hz, intensity of 2 mA; each EA treatment last for 20 min, once a day, and 3-day treatment was given before model establishment. The EF value was evaluated by ultrasonic cardiogram; the number of macrophages in spleen and heart was measured by flow cytometry; the expression level of NLRP3 and IL-1β in myocardium was measured by Western blot.
		                        		
		                        			RESULTS:
		                        			Compared with the control group, the EF value was decreased in the model group (<0.001), the number of macrophages in the heart and spleen was increased (<0.001), and the expression level of NLRP3 and IL-1β in the myocardium was increased (<0.001, <0.01). Compared with the model group, the EF value was increased in the EA pretreatment group (<0.01), the number of macrophages in the heart and spleen was decreased (<0.01), and the expression level of NLRP3 and IL-1β in the myocardium was decreased (<0.01, <0.05).
		                        		
		                        			CONCLUSION
		                        			EA pretreatment could reduce the number of macrophages in spleen and heart, down-regulate the expression of NLRP3 and IL-1β in myocardial tissue in mice with acute myocardial ischemia, which could relieve the local inflammatory response and achieve the myocardial protective effect.
		                        		
		                        		
		                        		
		                        			Acupuncture Points
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Electroacupuncture
		                        			;
		                        		
		                        			Heart
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Interleukin-1beta
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Myocardial Ischemia
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Myocardium
		                        			;
		                        		
		                        			NLR Family, Pyrin Domain-Containing 3 Protein
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Spleen
		                        			
		                        		
		                        	
3.Hesperetin derivative-12 (HDND-12) regulates macrophage polarization by modulating JAK2/STAT3 signaling pathway.
Ling-Na KONG ; Xiang LIN ; Cheng HUANG ; Tao-Tao MA ; Xiao-Ming MENG ; Chao-Jie HU ; Qian-Qian WANG ; Yan-Hui LIU ; Qing-Ping SHI ; Jun LI
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):122-130
		                        		
		                        			
		                        			Macrophages show significant heterogeneity in function and phenotype, which could shift into different populations of cells in response to exposure to various micro-environmental signals. These changes, also termed as macrophage polarization, of which play an important role in the pathogenesis of many diseases. Numerous studies have proved that Hesperidin (HDN), a traditional Chinese medicine, extracted from fruit peels of the genus citrus, play key roles in anti-inflammation, anti-tumor, anti-oxidant and so on. However, the role of HDN in macrophage polarization has never been reported. Additional, because of its poor water solubility and bioavailability. Our laboratory had synthesized many hesperidin derivatives. Among them, hesperidin derivatives-12 (HDND-12) has better water solubility and bioavailability. So, we evaluated the role of HDND-12 in macrophage polarization in the present study. The results showed that the expression of Arginase-1 (Arg-1), interleukin-10 (IL-10), transforming growth factor β (TGF-β) were up-regulated by HDND-12, whereas the expression of inducible Nitric Oxide Synthase (iNOS) was down-regulated in LPS- and IFN-γ-treated (M1) RAW264.7 cells. Moreover, the expression of p-JAK2 and p-STAT3 were significantly decreased after stimulation with HDND-12 in M1-like macrophages. More importantly, when we taken AG490 (inhibitor of JAK2/STAT3 signaling), the protein levels of iNOS were significantly reduced in AG490 stimulation group compare with control in LPS, IFN-γ and HDND-12 stimulation cells. Taken together, these findings indicated that HDND-12 could prevent polarization toward M1-like macrophages, at least in part, through modulating JAK2/STAT3 pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Enzyme Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Hesperidin
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Janus Kinase 2
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			RAW 264.7 Cells
		                        			;
		                        		
		                        			STAT3 Transcription Factor
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			drug effects
		                        			
		                        		
		                        	
4.Activation of phagocytosis by immune checkpoint blockade.
Chia-Wei LI ; Yun-Ju LAI ; Jennifer L HSU ; Mien-Chie HUNG
Frontiers of Medicine 2018;12(4):473-480
		                        		
		                        			
		                        			Inhibition of macrophage-mediated phagocytosis has emerged as an essential mechanism for tumor immune evasion. One mechanism inhibiting the innate response is the presence of the macrophage inhibitory molecule, signal regulatory protein-α (SIRPα), on tumor-associated macrophages (TAMs) and its cognate ligand cluster of differentiation 47 (CD47) on tumor cells in the tumor microenvironment. On the basis of a recently discovered programmed death protein 1 (PD-1) in TAMs, we discuss the potential inhibitory receptors that possess new functions beyond T cell exhaustion in this review. As more and more immune receptors are found to be expressed on TAMs, the corresponding therapies may also stimulate macrophages for phagocytosis and thereby provide extra anti-tumor benefits in cancer therapy. Therefore, identification of biomarkers and combinatorial therapeutic strategies, have the potential to improve the efficacy and safety profiles of current immunotherapies.
		                        		
		                        		
		                        		
		                        			Antigens, Surface
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Apoptosis Regulatory Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunotherapy
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Neoplasms
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Phagocytosis
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Treatment Outcome
		                        			;
		                        		
		                        			Tumor Microenvironment
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
5.Pentoxifylline inhibits liver fibrosis via hedgehog signaling pathway.
Hui LI ; Juan HUA ; Chun-Xia GUO ; Wei-Xian WANG ; Bao-Ju WANG ; Dong-Liang YANG ; Ping WEI ; Yin-Ping LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):372-376
		                        		
		                        			
		                        			Infection of schistosomiasis japonica may eventually lead to liver fibrosis, and no effective antifibrotic therapies are available but liver transplantation. Hedgehog (HH) signaling pathway has been involved in the process and is a promising target for treating liver fibrosis. This study aimed to explore the effects of pentoxifylline (PTX) on liver fibrosis induced by schistosoma japonicum infection by inhibiting the HH signaling pathway. Phorbol12-myristate13-acetate (PMA) was used to induce human acute mononuclear leukemia cells THP-1 to differentiate into macrophages. The THP-1-derived macrophages were stimulated by soluble egg antigen (SEA), and the culture supernatants were collected for detection of activation of macrophages. Cell Counting Kit-8 (CCK-8) was used to detect the cytotoxicity of the culture supernatant and PTX on the LX-2 cells. The LX-2 cells were administered with activated culture supernatant from macrophages and(or) PTX to detect the transforming growth factor-β gene expression. The mRNA expression of shh and gli-1, key parts in HH signaling pathway, was detected. The mRNA expression of shh and gli-1 was increased in LX-2 cells treated with activated macrophages-derived culture supernatant, suggesting HH signaling pathway may play a key role in the activation process of hepatic stellate cells (HSCs). The expression of these genes decreased in LX-2 cells co-cultured with both activated macrophages-derived culture supernatant and PTX, indicating PTX could suppress the activation process of HSCs. In conclusion, these data provide evidence that PTX prevents liver fibrogenesis in vitro by the suppression of HH signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antigens, Helminth
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Culture Techniques
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Culture Media, Conditioned
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Hedgehog Proteins
		                        			;
		                        		
		                        			agonists
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Hepatic Stellate Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Liver Cirrhosis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			parasitology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Macrophage Activation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Models, Biological
		                        			;
		                        		
		                        			Monocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pentoxifylline
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Phosphodiesterase Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Schistosoma japonicum
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Tetradecanoylphorbol Acetate
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Zinc Finger Protein GLI1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Zygote
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
6.MyD88-BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage.
A Jin LEE ; Kyung Jin CHO ; Jae Hong KIM
Experimental & Molecular Medicine 2015;47(4):e156-
		                        		
		                        			
		                        			Endotoxic responses to bacterial lipopolysaccharide (LPS) are triggered by Toll-like receptor 4 (TLR4) and involve the production of inflammatory mediators, including interleukin-6 (IL-6), by macrophages. The detailed mechanism of IL-6 production by macrophages in response to LPS has remained unclear, however. We now show that LPS induces IL-6 synthesis in mouse peritoneal macrophages via the leukotriene B4 receptor BLT2. Our results suggest that TLR4-MyD88 signaling functions upstream of BLT2 and that the generation of reactive oxygen species (ROS) by NADPH oxidase 1 (Nox1) and consequent activation of the transcription factor nuclear factor (NF)-kappaB function downstream of BLT2 in this response. These results suggest that a TLR4-MyD88-BLT2-Nox1-ROS-NF-kappaB pathway contributes to the synthesis of IL-6 in LPS-stimulated mouse macrophages.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Interleukin-6/*biosynthesis
		                        			;
		                        		
		                        			Leukotriene B4/metabolism
		                        			;
		                        		
		                        			Ligands
		                        			;
		                        		
		                        			Lipopolysaccharides/immunology
		                        			;
		                        		
		                        			Macrophages/immunology/*metabolism
		                        			;
		                        		
		                        			Macrophages, Peritoneal/immunology/metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Myeloid Differentiation Factor 88/*metabolism
		                        			;
		                        		
		                        			NADH, NADPH Oxidoreductases/metabolism
		                        			;
		                        		
		                        			NF-kappa B/metabolism
		                        			;
		                        		
		                        			Reactive Oxygen Species/metabolism
		                        			;
		                        		
		                        			Receptors, Leukotriene B4/*metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
7.Angiotensin II induces expression of inflammatory mediators in vascular adventitial fibroblasts.
Wen-Dong CHEN ; Yu-Feng CHU ; Xiao-Dong LI ; Ping-Jin GAO
Acta Physiologica Sinica 2015;67(6):603-610
		                        		
		                        			
		                        			Vascular adventitial fibroblasts (AF) may play an important role in vascular inflammation. This study was aimed to investigate the expression pattern of inflammatory mediators in AF induced by angiotensin II (AngII) and to explore the effects of AF-derived inflammatory mediators on the adhesion and migration of macrophages both in vitro and in vivo. We used real-time RT-PCR to detect the mRNA expression of inflammatory mediators in cultured AF. The results showed that AngII (1 × 10(-7) mol/L) up-regulated mRNA expression of 4 inflammatory mediators, including P-selectin, ICAM-1, IL-6 and MCP-1, in cultured AF. Western blot analysis or ELISA revealed that AngII up-regulated P-selectin and ICAM-1 protein expression and IL-6 secretion in cultured AF, but did not alter MCP-1 secretion. We further detected the effects of AF-derived inflammatory mediators on the adhesion and chemotaxis of RAW264.7, a macrophage cell line. We found that AF stimulated with AngII could enhance the adhesion of RAW264.7 and the conditioned medium from AngII-stimulated AF could enhance the migration of RAW264.7. Immunofluorescence study showed an enhanced accumulation of CD68 positive cells and the up-regulation of P-selectin, ICAM-1, IL-6 and MCP-1 in aortic adventitia of AngII-infused (200 ng/kg per min for 2 weeks) rats. We concluded that AF may contribute to vascular inflammation via expression of certain inflammatory mediators and the subsequent adhesion and chemotaxis of macrophages.
		                        		
		                        		
		                        		
		                        			Adventitia
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Angiotensin II
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Chemokine CCL2
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Culture Media, Conditioned
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Intercellular Adhesion Molecule-1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			P-Selectin
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RAW 264.7 Cells
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
8.Nuclear Molecular Imaging for Vulnerable Atherosclerotic Plaques.
Korean Journal of Radiology 2015;16(5):955-966
		                        		
		                        			
		                        			Atherosclerosis is an inflammatory disease as well as a lipid disorder. Atherosclerotic plaque formed in vessel walls may cause ischemia, and the rupture of vulnerable plaque may result in fatal events, like myocardial infarction or stroke. Because morphological imaging has limitations in diagnosing vulnerable plaque, molecular imaging has been developed, in particular, the use of nuclear imaging probes. Molecular imaging targets various aspects of vulnerable plaque, such as inflammatory cell accumulation, endothelial activation, proteolysis, neoangiogenesis, hypoxia, apoptosis, and calcification. Many preclinical and clinical studies have been conducted with various imaging probes and some of them have exhibited promising results. Despite some limitations in imaging technology, molecular imaging is expected to be used both in the research and clinical fields as imaging instruments become more advanced.
		                        		
		                        		
		                        		
		                        			Atherosclerosis/*diagnosis/pathology/radiography
		                        			;
		                        		
		                        			Endothelial Cells/metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation/pathology
		                        			;
		                        		
		                        			Lipoproteins, LDL/metabolism
		                        			;
		                        		
		                        			Macrophages/immunology/metabolism
		                        			;
		                        		
		                        			Plaque, Atherosclerotic
		                        			;
		                        		
		                        			Positron-Emission Tomography
		                        			;
		                        		
		                        			Tomography, Emission-Computed, Single-Photon
		                        			
		                        		
		                        	
9.The polysaccharide isolated from Pleurotus nebrodensis (PN-S) shows immune-stimulating activity in RAW264.7 macrophages.
Hai-Yan CUI ; Chang-Lu WANG ; Yu-Rong WANG ; Zhen-Jing LI ; Ya-Nan ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2015;13(5):355-360
		                        		
		                        			
		                        			A novel Pleurotus nebrodensis polysaccharide (PN-S) was purified and characterized, and its immune-stimulating activity was evaluated in RAW264.7 macrophages. PN-S induced the proliferation of RAW264.7 cells in a dose-dependent manner, as determined by the MTT assay. After exposure to PN-S, the phagocytosis of the macrophages was significantly improved, with remarkable changes in morphology being observed. Flow cytometric analysis demonstrated that PN-S promoted RAW264.7 cells to progress through S and G2/M phases. PN-S treatment enhanced the productions of interleukin-6 (IL-6), nitric oxide (NO), interferon gamma (INF-γ), and tumor necrosis factor-α (TNF-α) in the macrophages, with up-regulation of mRNA expressions of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), interferon gamma(INF-γ) and tumor necrosis factor-α (TNF-α) being observed in a dose-dependent manner, as measured by qRT-PCR. In conclusion, these results suggest that the purified PN-S can improve immunity by activating macrophages.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Cycle
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Fungal Polysaccharides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Immunity
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Interferon-gamma
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type II
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pleurotus
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Reverse Transcriptase Polymerase Chain Reaction
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
10.Pleurotus nebrodensis polysaccharide (PN-S) enhances the immunity of immunosuppressed mice.
Hai-Yan CUI ; Chang-Lu WANG ; Yu-Rong WANG ; Zhen-Jing LI ; Mian-Hua CHEN ; Feng-Juan LI ; Yan-Ping SUN
Chinese Journal of Natural Medicines (English Ed.) 2015;13(10):760-766
		                        		
		                        			
		                        			In the present study, the effects of Pleurotus nebrodensis polysaccharide (PN-S) on the immune functions of immunosuppressed mice were determined. The immunosuppressed mouse model was established by treating the mice with cyclophosphamide (40 mg/kg/2d, CY) through intraperitoneal injection. The results showed that PN-S administration significantly reversed the CY-induced weight loss, increased the thymic and splenic indices, and promoted proliferation of T lymphocyte, B lymphocyte, and macrophages. PN-S also enhanced the activity of natural killer cells and increased the immunoglobulin M (IgM) and immunoglobulin G (IgG) levels in the serum. In addition, PN-S treatment significantly increased the phagocytic activity of mouse peritoneal macrophages. PN-S also increased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), and nitric oxide (NOS) in splenocytes. qRT-PCR results also indicated that PN-S increased the mRNA expression of IL-6, TNF-α, INF-γ, and nitric oxide synthase (iNOS) in the splenocytes. These results suggest that PN-S treatment enhances the immune function of immunosuppressed mice. This study may provide a basis for the application of this fungus in adjacent immunopotentiating therapy against cancer and in the treatment of chemotherapy-induced immunosuppression.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antineoplastic Agents, Alkylating
		                        			;
		                        		
		                        			Biological Products
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cyclophosphamide
		                        			;
		                        		
		                        			Immunity
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Immunologic Factors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Immunosuppression
		                        			;
		                        		
		                        			Interferon-gamma
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Neoplasms
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type II
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Phagocytosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Pleurotus
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Polysaccharides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail