1.Caprylic Acid Improves Lipid Metabolism, Suppresses the Inflammatory Response and Activates the ABCA1/p-JAK2/p-STAT3 Signaling Pathway in C57BL/6J Mice and RAW264.7 Cells.
Xin Sheng ZHANG ; Peng ZHANG ; Ying Hua LIU ; Qing XU ; Yong ZHANG ; Hui Zi LI ; Lu LIU ; Yu Meng LIU ; Xue Yan YANG ; Chang Yong XUE
Biomedical and Environmental Sciences 2022;35(2):95-106
		                        		
		                        			OBJECTIVE:
		                        			This study aimed to investigate the effects of caprylic acid (C8:0) on lipid metabolism and inflammation, and examine the mechanisms underlying these effects in mice and cells.
		                        		
		                        			METHODS:
		                        			Fifty-six 6-week-old male C57BL/6J mice were randomly allocated to four groups fed a high-fat diet (HFD) without or with 2% C8:0, palmitic acid (C16:0) or eicosapentaenoic acid (EPA). RAW246.7 cells were randomly divided into five groups: normal, lipopolysaccharide (LPS), LPS+C8:0, LPS+EPA and LPS+cAMP. The serum lipid profiles, inflammatory biomolecules, and ABCA1 and JAK2/STAT3 mRNA and protein expression were measured.
		                        		
		                        			RESULTS:
		                        			C8:0 decreased TC and LDL-C, and increased the HDL-C/LDL-C ratio after injection of LPS. Without LPS, it decreased TC in mice ( P < 0.05). Moreover, C8:0 decreased the inflammatory response after LPS treatment in both mice and cells ( P < 0.05). Mechanistic investigations in C57BL/6J mouse aortas after injection of LPS indicated that C8:0 resulted in higher ABCA1 and JAK2/STAT3 expression than that with HFD, C16:0 and EPA, and resulted in lower TNF-α, NF-κB mRNA expression than that with HFD ( P < 0.05). In RAW 264.7 cells, C8:0 resulted in lower expression of pNF-κBP65 than that in the LPS group, and higher protein expression of ABCA1, p-JAK2 and p-STAT3 than that in the LPS and LPS+cAMP groups ( P < 0.05).
		                        		
		                        			CONCLUSION
		                        			Our studies demonstrated that C8:0 may play an important role in lipid metabolism and the inflammatory response, and the mechanism may be associated with ABCA1 and the p-JAK2/p-STAT3 signaling pathway.
		                        		
		                        		
		                        		
		                        			ATP Binding Cassette Transporter 1/immunology*
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Caprylates/chemistry*
		                        			;
		                        		
		                        			Cholesterol/metabolism*
		                        			;
		                        		
		                        			Diet, High-Fat/adverse effects*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation/metabolism*
		                        			;
		                        		
		                        			Janus Kinase 2/immunology*
		                        			;
		                        		
		                        			Lipid Metabolism/drug effects*
		                        			;
		                        		
		                        			Macrophages/immunology*
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			RAW 264.7 Cells
		                        			;
		                        		
		                        			STAT3 Transcription Factor/immunology*
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
2.Hesperetin derivative-12 (HDND-12) regulates macrophage polarization by modulating JAK2/STAT3 signaling pathway.
Ling-Na KONG ; Xiang LIN ; Cheng HUANG ; Tao-Tao MA ; Xiao-Ming MENG ; Chao-Jie HU ; Qian-Qian WANG ; Yan-Hui LIU ; Qing-Ping SHI ; Jun LI
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):122-130
		                        		
		                        			
		                        			Macrophages show significant heterogeneity in function and phenotype, which could shift into different populations of cells in response to exposure to various micro-environmental signals. These changes, also termed as macrophage polarization, of which play an important role in the pathogenesis of many diseases. Numerous studies have proved that Hesperidin (HDN), a traditional Chinese medicine, extracted from fruit peels of the genus citrus, play key roles in anti-inflammation, anti-tumor, anti-oxidant and so on. However, the role of HDN in macrophage polarization has never been reported. Additional, because of its poor water solubility and bioavailability. Our laboratory had synthesized many hesperidin derivatives. Among them, hesperidin derivatives-12 (HDND-12) has better water solubility and bioavailability. So, we evaluated the role of HDND-12 in macrophage polarization in the present study. The results showed that the expression of Arginase-1 (Arg-1), interleukin-10 (IL-10), transforming growth factor β (TGF-β) were up-regulated by HDND-12, whereas the expression of inducible Nitric Oxide Synthase (iNOS) was down-regulated in LPS- and IFN-γ-treated (M1) RAW264.7 cells. Moreover, the expression of p-JAK2 and p-STAT3 were significantly decreased after stimulation with HDND-12 in M1-like macrophages. More importantly, when we taken AG490 (inhibitor of JAK2/STAT3 signaling), the protein levels of iNOS were significantly reduced in AG490 stimulation group compare with control in LPS, IFN-γ and HDND-12 stimulation cells. Taken together, these findings indicated that HDND-12 could prevent polarization toward M1-like macrophages, at least in part, through modulating JAK2/STAT3 pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Enzyme Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Hesperidin
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Janus Kinase 2
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			RAW 264.7 Cells
		                        			;
		                        		
		                        			STAT3 Transcription Factor
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			drug effects
		                        			
		                        		
		                        	
3.Pentoxifylline inhibits liver fibrosis via hedgehog signaling pathway.
Hui LI ; Juan HUA ; Chun-Xia GUO ; Wei-Xian WANG ; Bao-Ju WANG ; Dong-Liang YANG ; Ping WEI ; Yin-Ping LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):372-376
		                        		
		                        			
		                        			Infection of schistosomiasis japonica may eventually lead to liver fibrosis, and no effective antifibrotic therapies are available but liver transplantation. Hedgehog (HH) signaling pathway has been involved in the process and is a promising target for treating liver fibrosis. This study aimed to explore the effects of pentoxifylline (PTX) on liver fibrosis induced by schistosoma japonicum infection by inhibiting the HH signaling pathway. Phorbol12-myristate13-acetate (PMA) was used to induce human acute mononuclear leukemia cells THP-1 to differentiate into macrophages. The THP-1-derived macrophages were stimulated by soluble egg antigen (SEA), and the culture supernatants were collected for detection of activation of macrophages. Cell Counting Kit-8 (CCK-8) was used to detect the cytotoxicity of the culture supernatant and PTX on the LX-2 cells. The LX-2 cells were administered with activated culture supernatant from macrophages and(or) PTX to detect the transforming growth factor-β gene expression. The mRNA expression of shh and gli-1, key parts in HH signaling pathway, was detected. The mRNA expression of shh and gli-1 was increased in LX-2 cells treated with activated macrophages-derived culture supernatant, suggesting HH signaling pathway may play a key role in the activation process of hepatic stellate cells (HSCs). The expression of these genes decreased in LX-2 cells co-cultured with both activated macrophages-derived culture supernatant and PTX, indicating PTX could suppress the activation process of HSCs. In conclusion, these data provide evidence that PTX prevents liver fibrogenesis in vitro by the suppression of HH signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antigens, Helminth
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Culture Techniques
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Culture Media, Conditioned
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Hedgehog Proteins
		                        			;
		                        		
		                        			agonists
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Hepatic Stellate Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Liver Cirrhosis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			parasitology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Macrophage Activation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Models, Biological
		                        			;
		                        		
		                        			Monocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pentoxifylline
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Phosphodiesterase Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Schistosoma japonicum
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Tetradecanoylphorbol Acetate
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Zinc Finger Protein GLI1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Zygote
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
4.Angiotensin II induces expression of inflammatory mediators in vascular adventitial fibroblasts.
Wen-Dong CHEN ; Yu-Feng CHU ; Xiao-Dong LI ; Ping-Jin GAO
Acta Physiologica Sinica 2015;67(6):603-610
		                        		
		                        			
		                        			Vascular adventitial fibroblasts (AF) may play an important role in vascular inflammation. This study was aimed to investigate the expression pattern of inflammatory mediators in AF induced by angiotensin II (AngII) and to explore the effects of AF-derived inflammatory mediators on the adhesion and migration of macrophages both in vitro and in vivo. We used real-time RT-PCR to detect the mRNA expression of inflammatory mediators in cultured AF. The results showed that AngII (1 × 10(-7) mol/L) up-regulated mRNA expression of 4 inflammatory mediators, including P-selectin, ICAM-1, IL-6 and MCP-1, in cultured AF. Western blot analysis or ELISA revealed that AngII up-regulated P-selectin and ICAM-1 protein expression and IL-6 secretion in cultured AF, but did not alter MCP-1 secretion. We further detected the effects of AF-derived inflammatory mediators on the adhesion and chemotaxis of RAW264.7, a macrophage cell line. We found that AF stimulated with AngII could enhance the adhesion of RAW264.7 and the conditioned medium from AngII-stimulated AF could enhance the migration of RAW264.7. Immunofluorescence study showed an enhanced accumulation of CD68 positive cells and the up-regulation of P-selectin, ICAM-1, IL-6 and MCP-1 in aortic adventitia of AngII-infused (200 ng/kg per min for 2 weeks) rats. We concluded that AF may contribute to vascular inflammation via expression of certain inflammatory mediators and the subsequent adhesion and chemotaxis of macrophages.
		                        		
		                        		
		                        		
		                        			Adventitia
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Angiotensin II
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Chemokine CCL2
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Culture Media, Conditioned
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Intercellular Adhesion Molecule-1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			P-Selectin
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RAW 264.7 Cells
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
5.The polysaccharide isolated from Pleurotus nebrodensis (PN-S) shows immune-stimulating activity in RAW264.7 macrophages.
Hai-Yan CUI ; Chang-Lu WANG ; Yu-Rong WANG ; Zhen-Jing LI ; Ya-Nan ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2015;13(5):355-360
		                        		
		                        			
		                        			A novel Pleurotus nebrodensis polysaccharide (PN-S) was purified and characterized, and its immune-stimulating activity was evaluated in RAW264.7 macrophages. PN-S induced the proliferation of RAW264.7 cells in a dose-dependent manner, as determined by the MTT assay. After exposure to PN-S, the phagocytosis of the macrophages was significantly improved, with remarkable changes in morphology being observed. Flow cytometric analysis demonstrated that PN-S promoted RAW264.7 cells to progress through S and G2/M phases. PN-S treatment enhanced the productions of interleukin-6 (IL-6), nitric oxide (NO), interferon gamma (INF-γ), and tumor necrosis factor-α (TNF-α) in the macrophages, with up-regulation of mRNA expressions of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), interferon gamma(INF-γ) and tumor necrosis factor-α (TNF-α) being observed in a dose-dependent manner, as measured by qRT-PCR. In conclusion, these results suggest that the purified PN-S can improve immunity by activating macrophages.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Cycle
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Fungal Polysaccharides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Immunity
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Interferon-gamma
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type II
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pleurotus
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Reverse Transcriptase Polymerase Chain Reaction
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
6.Pleurotus nebrodensis polysaccharide (PN-S) enhances the immunity of immunosuppressed mice.
Hai-Yan CUI ; Chang-Lu WANG ; Yu-Rong WANG ; Zhen-Jing LI ; Mian-Hua CHEN ; Feng-Juan LI ; Yan-Ping SUN
Chinese Journal of Natural Medicines (English Ed.) 2015;13(10):760-766
		                        		
		                        			
		                        			In the present study, the effects of Pleurotus nebrodensis polysaccharide (PN-S) on the immune functions of immunosuppressed mice were determined. The immunosuppressed mouse model was established by treating the mice with cyclophosphamide (40 mg/kg/2d, CY) through intraperitoneal injection. The results showed that PN-S administration significantly reversed the CY-induced weight loss, increased the thymic and splenic indices, and promoted proliferation of T lymphocyte, B lymphocyte, and macrophages. PN-S also enhanced the activity of natural killer cells and increased the immunoglobulin M (IgM) and immunoglobulin G (IgG) levels in the serum. In addition, PN-S treatment significantly increased the phagocytic activity of mouse peritoneal macrophages. PN-S also increased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), and nitric oxide (NOS) in splenocytes. qRT-PCR results also indicated that PN-S increased the mRNA expression of IL-6, TNF-α, INF-γ, and nitric oxide synthase (iNOS) in the splenocytes. These results suggest that PN-S treatment enhances the immune function of immunosuppressed mice. This study may provide a basis for the application of this fungus in adjacent immunopotentiating therapy against cancer and in the treatment of chemotherapy-induced immunosuppression.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antineoplastic Agents, Alkylating
		                        			;
		                        		
		                        			Biological Products
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cyclophosphamide
		                        			;
		                        		
		                        			Immunity
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Immunologic Factors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Immunosuppression
		                        			;
		                        		
		                        			Interferon-gamma
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Neoplasms
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type II
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Phagocytosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Pleurotus
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Polysaccharides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
7.Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages.
Dong Im CHO ; Mi Ra KIM ; Hye Yun JEONG ; Hae Chang JEONG ; Myung Ho JEONG ; Sung Ho YOON ; Yong Sook KIM ; Youngkeun AHN
Experimental & Molecular Medicine 2014;46(1):e70-
		                        		
		                        			
		                        			Mesenchymal stem cells (MSCs) have been widely studied for their applications in stem cell-based regeneration. During myocardial infarction (MI), infiltrated macrophages have pivotal roles in inflammation, angiogenesis and cardiac remodeling. We hypothesized that MSCs may modulate the immunologic environment to accelerate regeneration. This study was designed to assess the functional relationship between the macrophage phenotype and MSCs. MSCs isolated from bone marrow and bone marrow-derived macrophages (BMDMs) underwent differentiation induced by macrophage colony-stimulating factor. To determine the macrophage phenotype, classical M1 markers and alternative M2 markers were analyzed with or without co-culturing with MSCs in a transwell system. For animal studies, MI was induced by the ligation of the rat coronary artery. MSCs were injected within the infarct myocardium, and we analyzed the phenotype of the infiltrated macrophages by immunostaining. In the MSC-injected myocardium, the macrophages adjacent to the MSCs showed strong expression of arginase-1 (Arg1), an M2 marker. In BMDMs co-cultured with MSCs, the M1 markers such as interleukin-6 (IL-6), IL-1beta, monocyte chemoattractant protein-1 and inducible nitric oxide synthase (iNOS) were significantly reduced. In contrast, the M2 markers such as IL-10, IL-4, CD206 and Arg1 were markedly increased by co-culturing with MSCs. Specifically, the ratio of iNOS to Arg1 in BMDMs was notably downregulated by co-culturing with MSCs. These results suggest that the preferential shift of the macrophage phenotype from M1 to M2 may be related to the immune-modulating characteristics of MSCs that contribute to cardiac repair.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Biomarkers/metabolism
		                        			;
		                        		
		                        			*Cell Differentiation
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Coculture Techniques
		                        			;
		                        		
		                        			Culture Media, Conditioned/pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			*Macrophage Activation
		                        			;
		                        		
		                        			Macrophage Colony-Stimulating Factor/*pharmacology
		                        			;
		                        		
		                        			Macrophages/drug effects/*immunology/metabolism
		                        			;
		                        		
		                        			*Mesenchymal Stem Cell Transplantation
		                        			;
		                        		
		                        			Mesenchymal Stromal Cells/*cytology/drug effects/metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Myocardial Infarction/surgery
		                        			;
		                        		
		                        			Rats
		                        			
		                        		
		                        	
8.Andrographolide as an anti-H1N1 drug and the mechanism related to retinoic acid-inducible gene-I-like receptors signaling pathway.
Bin YU ; Cong-qi DAI ; Zhen-you JIANG ; En-qing LI ; Chen CHEN ; Xian-lin WU ; Jia CHEN ; Qian LIU ; Chang-lin ZHAO ; Jin-xiong HE ; Da-hong JU ; Xiao-yin CHEN
Chinese journal of integrative medicine 2014;20(7):540-545
OBJECTIVETo observe the anti-virus effects of andrographolide (AD) on the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) signaling pathway when immunological cells were infected with H1N1.
METHODSLeukomonocyte was obtained from umbilical cord blood by Ficoll density gradient centrifugation, and immunological cells were harvested after cytokines stimulation. Virus infected cell model was established by H1N1 co-cultured with normal human bronchial epithelial cell line (16HBE). The optimal concentration of AD was defined by methyl-thiazolyl-tetrazolium (MTT) assay. After the virus infected cell model was established, AD was added into the medium as a treatment intervention. After 24-h co-culture, cell supernatant was collected for interferon gamma (IFN-γ) and interleukin-4 (IL-4) enzyme-linked immunosorbent assay (ELISA) detection while immunological cells for real-time polymerase chain reaction (RT-PCR).
RESULTSThe optimal concentration of AD for anti-virus effect was 250 μg/mL. IL-4 and IFN-γ in the supernatant and mRNA levels in RLRs pathway increased when cells was infected by virus, RIG-I, IFN-β promoter stimulator-1 (IPS-1), interferon regulatory factor (IRF)-7, IRF-3 and nuclear transcription factor κB (NF-κB) mRNA levels increased significantly (P<0.05). When AD was added into co-culture medium, the levels of IL-4 and IFN-γ were lower than those in the non-interference groups and the mRNA expression levels decreased, RIG-I, IPS-1, IRF-7, IRF-3 and NF-κB decreased significantly in each group with significant statistic differences (P<0.05).
CONCLUSIONSThe RLRs mediated viral recognition provided a potential molecular target for acute viral infections and andrographolide could ameliorate H1N1 virus-induced cell mortality. And the antiviral effects might be related to its inhibition of viral-induced activation of the RLRs signaling pathway.
Adaptor Proteins, Signal Transducing ; genetics ; metabolism ; Antiviral Agents ; pharmacology ; Cells, Cultured ; Coculture Techniques ; DEAD Box Protein 58 ; DEAD-box RNA Helicases ; genetics ; metabolism ; Dendritic Cells ; drug effects ; immunology ; virology ; Diterpenes ; pharmacology ; Fetal Blood ; cytology ; Humans ; Influenza A Virus, H1N1 Subtype ; drug effects ; immunology ; Influenza, Human ; drug therapy ; immunology ; virology ; Interferon-beta ; genetics ; metabolism ; Interferon-gamma ; metabolism ; Interleukin-4 ; metabolism ; Leukocytes, Mononuclear ; drug effects ; immunology ; virology ; Macrophages ; drug effects ; virology ; NF-kappa B ; genetics ; metabolism ; Promoter Regions, Genetic ; drug effects ; immunology ; RNA, Messenger ; metabolism ; Signal Transduction ; drug effects ; genetics ; immunology
9.Thymic stromal lmphopoietin pomotes macrophage-derived foam cell formation.
Da-zhu LI ; Bo-yuan WANG ; Bao-jie YANG ; Shao-lin HE ; Jing LIN ; Jiang-chuan DONG ; Chun WU ; Jun HU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):23-28
		                        		
		                        			
		                        			The effect of thymic stromal lymphopoietin (TSLP) on macrophage-derived foam cell formation and the underlying mechanism were studied. Macrophages isolated from C57BL/6 mice were co-cultured in vitro with different concentrations of TSLP or TSLPR-antibody in the presence of oxidized low density lipoprotein (ox-LDL). The effects of TSLP on macrophage-derived foam cell formation were observed by using oil red O staining and intracellular lipid determination. The expression levels of foam cell scavenger receptors (CD36 and SRA) as well as ABCA1 and TSLPR were detected by using RT-PCR and Western blotting. As compared with the control group, TSLP treatment significantly promoted lipid accumulation in macrophages, significantly increased protein expression of CD36 and TSLPR in a dose-dependent manner, and significantly reduced the expression of ABCA1 protein in a dose-dependent manner. No significant differences were noted between the TSLPR-antibody group and the control group. TSLP may down-regulate the expression of cholesterol efflux receptor ABCA1 and up-regulate scavenger receptor expression via the TSLPR signaling pathway, thereby promoting macrophage-derived foam cell formation.
		                        		
		                        		
		                        		
		                        			ATP Binding Cassette Transporter 1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			CD36 Antigens
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Cholesterol
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cholesterol Esters
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Foam Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Immunoglobulins
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Lipoproteins, LDL
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Receptors, Cytokine
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Reverse Transcriptase Polymerase Chain Reaction
		                        			;
		                        		
		                        			Scavenger Receptors, Class A
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
10.Effect and mechanisms of Gong-tone music on the immunological function in rats with Liver (Gan)-qi depression and Spleen (Pi)-qi deficiency syndrome in rats.
Shu-Yu ZHANG ; Gui-Ying PENG ; Li-Gang GU ; Zi-Mu LI ; Sheng-Jun YIN
Chinese journal of integrative medicine 2013;19(3):212-216
OBJECTIVETo investigate the effects and mechanisms of Gong-tone music on the immunological function in rats with the Chinese medicine syndrome of Liver (Gan)-qi stagnation and Spleen (Pi)-qi deficiency (LSSD).
METHODSTwenty five male Wistar rats of SPF grade were randomly divided into 5 groups: normal group, model group, Xiaoyao Powder () group, Gong-tone group and combined group (the combination of Gong-tone and Xiaoyao Powder), with 5 rats in each group. The rat model for the Chinese medicine syndrome of LSSD was induced by chronic bandage and irregular diet. The course of treatment was 21 days. After the treatment, the levels of serum gastrin and IgG were detected by enzyme-linked immunoabsorbent assay (ELISA). Phagocytosis of macrophages was detected by the neutral red uptake assay and T cell proliferation was investigated by 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay.
RESULTSThe serum gastrin, macrophage phagocytosis, IgG level and proliferation ability of T cells in the model group were significantly decreased compared with those in the normal group (P <0.05). Compared with those in the model group, the serum levels of gastrin, macrophage phagocytosis, IgG level and proliferation ability of T cells in Gong-tone, Xiaoyao Powder, and combined groups were significantly increased (P <0.05). The combined group was superior to either Gong-tone group or Xiaoyao Powder group.
CONCLUSIONGong-tone music may upregulate the immunological function and play a role in adjuvant therapy in the Chinese syndrome of LSSD.
Animals ; Auditory Perception ; Behavior, Animal ; Body Weight ; Cell Proliferation ; Depression ; blood ; immunology ; Gastrins ; blood ; Immunoglobulin G ; blood ; Liver ; immunology ; Macrophages ; cytology ; Male ; Music ; Phagocytosis ; Qi ; Rats ; Rats, Wistar ; Spleen ; immunology ; Syndrome ; T-Lymphocytes ; cytology ; drug effects ; metabolism
            
Result Analysis
Print
Save
E-mail