1.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
2.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
3.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
4.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
5.Evaluating the Validity and Reliability of the Korean Version of the Scales for Outcomes in Parkinson’s Disease–Cognition
Jinse PARK ; Eungseok OH ; Seong-Beom KOH ; In-Uk SONG ; Tae-Beom AHN ; Sang Jin KIM ; Sang-Myung CHEON ; Yoon-Joong KIM ; Jin Whan CHO ; Hyeo-Il MA ; Mee Young PARK ; Jong Sam BAIK ; Phil Hyu LEE ; Sun Ju CHUNG ; Jong-Min KIM ; Han-Joon KIM ; Young-Hee SUNG ; Do Young KWON ; Jae-Hyeok LEE ; Jee-Young LEE ; Ji Seon KIM ; Ji Young YUN ; Hee Jin KIM ; Jin Yong HONG ; Mi-Jung KIM ; Jinyoung YOUN ; Hui-Jun YANG ; Won Tae YOON ; Sooyeoun YOU ; Kyum-Yil KWON ; Su-Yun LEE ; Younsoo KIM ; Hee-Tae KIM ; Joong-Seok KIM ; Ji-Young KIM
Journal of Movement Disorders 2024;17(3):328-332
Objective:
The Scales for Outcomes in Parkinson’s Disease–Cognition (SCOPA-Cog) was developed to assess cognition in patients with Parkinson’s disease (PD). In this study, we aimed to evaluate the validity and reliability of the Korean version of the SCOPACog (K-SCOPA-Cog).
Methods:
We enrolled 129 PD patients with movement disorders from 31 clinics in South Korea. The original version of the SCOPA-Cog was translated into Korean using the translation-retranslation method. The test–retest method with an intraclass correlation coefficient (ICC) and Cronbach’s alpha coefficient were used to assess reliability. Spearman’s rank correlation analysis with the Montreal Cognitive Assessment-Korean version (MOCA-K) and the Korean Mini-Mental State Examination (K-MMSE) were used to assess concurrent validity.
Results:
The Cronbach’s alpha coefficient was 0.797, and the ICC was 0.887. Spearman’s rank correlation analysis revealed a significant correlation with the K-MMSE and MOCA-K scores (r = 0.546 and r = 0.683, respectively).
Conclusion
Our results demonstrate that the K-SCOPA-Cog has good reliability and validity.
6.Obesity is associated with incident chronic kidney disease in individuals with normal renal function
Su Hyun SONG ; Tae Ryom OH ; Sang Heon SUH ; Hong Sang CHOI ; Chang Seong KIM ; Seong Kwon MA ; Soo Wan KIM ; Eun Hui BAE
The Korean Journal of Internal Medicine 2024;39(5):813-822
Background/Aims:
Obesity has known to be a modifiable risk factor associated with worse outcomes in chronic kidney disease (CKD), but few studies have examined the impact of obesity on CKD incidence in the general population. The purpose of this study was to investigate the role of body mass index (BMI) and waist-to-hip ratio (WHR) as predictors of incident CKD and to evaluate the impact of weight reduction on CKD prevention.
Methods:
A total of 2,711 participants from a community-based cohort with normal renal function were prospectively analyzed. Among participants with obesity, we analyzed the change in WHR to evaluate the association of obesity reduction with CKD development.
Results:
During a mean follow-up of 11.03 ± 4.22 years, incident CKD occurred in 190 (7.0%) participants. In the fully adjusted multivariable Cox proportional hazard models, the risk of incident CKD increased with higher BMI (hazard ratio, 1.06; 95% confidence interval, 1.00–1.11; p = 0.033) and higher WHR (hazard ratio, 1.33; 95% confidence interval, 1.07–1.66; p = 0.009). In the Kaplan–Meier analysis, cumulative adverse renal events were significantly more common in the maintained obesity group than in the reduced obesity group (p = 0.001).
Conclusions
Both higher BMI and WHR were associated with development of CKD, but the magnitude of the effect of WHR was higher than that of BMI. Moreover, reducing obesity would be beneficial for renal prognosis.
7.Current Status and Future Perspectives on Stem Cell-Based Therapies for Parkinson’s Disease
Young CHA ; Tae-Yoon PARK ; Pierre LEBLANC ; Kwang-Soo KIM
Journal of Movement Disorders 2023;16(1):22-41
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting 1%–2% of the population over the age of 65. As the population ages, it is anticipated that the burden on society will significantly escalate. Although symptom reduction by currently available pharmacological and/or surgical treatments improves the quality of life of many PD patients, there are no treatments that can slow down, halt, or reverse disease progression. Because the loss of a specific cell type, midbrain dopamine neurons in the substantia nigra, is the main cause of motor dysfunction in PD, it is considered a promising target for cell replacement therapy. Indeed, numerous preclinical and clinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells remains fraught with controversy due to fundamental ethical, practical, and clinical limitations. Groundbreaking work on human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, coupled with extensive basic research in the stem cell field offers promising potential for hPSC-based cell replacement to become a realistic treatment regimen for PD once several major issues can be successfully addressed. In this review, we will discuss the prospects and challenges of hPSC-based cell therapy for PD.
8.Weight change and risk of depression in patients with diabetic kidney disease: a nationwide population-based study
Hong Sang CHOI ; Bongseong KIM ; Kyung-Do HAN ; Tae Ryom OH ; Sang Heon SUH ; Minah KIM ; Chang Seong KIM ; Eun Hui BAE ; Seong Kwon MA ; Soo Wan KIM
Kidney Research and Clinical Practice 2023;42(1):86-97
Several studies have reported that depression is prevalent in patients with diabetes or chronic kidney disease. However, the relationship between weight changes and the risk of depression has not been elucidated in patients with diabetic kidney disease (DKD). Methods: From the Korean National Health Insurance Service database, we selected 67,866 patients with DKD and body weight data from two consecutive health examinations with a 2-year interval between 2009 and 2012. Weight change over 2 years was categorized into five groups: ≥–10%, <–10% to ≥–5%, <–5% to <5%, ≥5% to <10%, and ≥10%. The occurrence of depression was monitored via the codes of International Statistical Classification of Diseases, 10th revision through the end of 2018. Results: During the 5.24-year follow-up, 17,023 patients with DKD developed depression. Weight change and the risk of depression had a U-shaped relationship: patients with ≥–10% weight change (hazard ratio [HR], 1.12) and those with ≥10% weight change (HR, 1.11) showed higher HRs for depression than those with <–5% to <5% weight change, even after adjusting for several confounding factors. In the subgroup analyses, the risk of depression tended to increase as weight gain or weight loss increased in all subgroups. Conclusion: Both weight loss and weight gain increased the risk of depression in patients with DKD.
9.Differential Impact of Obesity on the Risk of Diabetes Development in Two Age Groups: Analysis from the National Health Screening Program
Tae Kyung YOO ; Kyung-Do HAN ; Yang-Hyun KIM ; Ga Eun NAM ; Sang Hyun PARK ; Eun-Jung RHEE ; Won-Young LEE
Diabetes & Metabolism Journal 2023;47(6):846-858
Background:
The effect of obesity on the development of type 2 diabetes mellitus (DM) in different age groups remains unclear. We assessed the impact of obesity on the development of DM for two age groups (40-year-old, middle age; 66-year-old, older adults) in the Korean population.
Methods:
We analyzed Korean National Health Insurance Service data of 4,145,321 Korean adults with 40- and 66-year-old age without DM, between 2009 and 2014. Participants were followed up until 2017 or until the diagnosis of DM. We assessed the risk of DM based on the body mass index and waist circumference of the participants. Multiple confounding factors were adjusted.
Results:
The median follow-up duration was 5.6 years. The association of general and abdominal obesity with the risk of DM development was stronger in the 40-year-old group (general obesity: hazard ratio [HR], 3.566, 95% confidence interval [CI], 3.512 to 3.622; abdominal obesity: HR, 3.231; 95% CI, 3.184 to 3.278) than in the 66-year-old group (general obesity: HR, 1.739; 95% CI, 1.719 to 1.759; abdominal obesity: HR, 1.799; 95% CI, 1.778 to 1.820). In the 66-year-old group, abdominal obesity had a stronger association with the development of DM as compared to general obesity. In the 40-year-old group, general obesity had a stronger association with the risk of DM development than abdominal obesity.
Conclusion
The influence of general and abdominal obesity on the development of DM differed according to age. In older adults, abdominal obesity had a stronger association with DM development than general obesity.
10.Association between N-Terminal Prohormone Brain Natriuretic Peptide and Decreased Skeletal Muscle Mass in a Healthy Adult Population: A Cross-Sectional Study
Tae Kyung YOO ; Marie Yung-Chen WU ; Moon Soo KIM ; Mi-Yeon LEE ; Yong-Taek LEE ; Kyung Jae YOON ; Chul-Hyun PARK
Endocrinology and Metabolism 2023;38(2):269-276
Background:
Although an inverse association between the N-terminal prohormone brain natriuretic peptide (NT-proBNP) and obesity exists, only few major studies have assessed the association between NT-proBNP levels and skeletal muscle mass in asymptomatic healthy adults. Therefore, this cross-sectional study was conducted.
Methods:
We assessed participants who underwent health examinations at Kangbuk Samsung Hospital in South Korea from January 2012 to December 2019. Appendicular skeletal muscle mass was measured using a bioelectrical impedance analyzer, and the skeletal muscle mass index (SMI) was calculated. Participants were divided into the control, mildly low skeletal muscle mass (LMM) (−2 standard deviation [SD] < SMI ≤−1 [SD]), and severely LMM groups (SD ≤−2) based on their SMI. The association between elevated NT-proBNP level (≥125 pg/mL) and skeletal muscle mass was assessed using multivariable logistic regression analysis with adjustment for confounding factors.
Results:
This study enrolled 15,013 participants (mean age, 37.52±9.52; men, 54.24%; control, n=12,827; mildly LMM, n=1,998; severely LMM, n=188). Prevalence of elevated NT-proBNP was higher in mildly and severely LMM groups than in the control group (control, 1.19%; mildly LMM, 1.4%; severely LMM, 4.26%; P=0.001). The adjusted odds ratio (OR) of elevated NT-proBNP was significantly higher in severely LMM (OR, 2.87; 95% confidence interval [CI], 1.3 to 6.37) than in control (OR, 1.00; reference) or mildly LMM groups (OR, 1.24; 95% CI, 0.81 to 1.89).
Conclusion
Our results showed that NT-proBNP elevation were more prevalent in participants with LMM. In addition, our study showed an association between skeletal muscle mass and NT-proBNP level in a relatively young and healthy adult population.

Result Analysis
Print
Save
E-mail