1.Acteoside promotes autophagy and apoptosis of hepatoma cells by regulating JNK signaling pathway.
Yu-Jing HE ; Ying ZHENG ; Chu-Yi LI ; Liu-Lu GAO ; Jun-Ke WANG ; Bin LI ; Li-Xia LU ; Pan WANG ; Xiao-Hui YU ; Jiu-Cong ZHANG
China Journal of Chinese Materia Medica 2023;48(9):2343-2351
This study explored the molecular mechanism of acteoside against hepatoma 22(H22) tumor in mice through c-Jun N-terminal kinase(JNK) signaling pathway. H22 cells were subcutaneously inoculated in 50 male BALB/c mice, and then the model mice were classified into model group, low-dose, medium-dose, and high-dose acteoside groups, and cisplatin group. The administration lasted 2 weeks for each group(5 consecutive days/week). The general conditions of mice in each group, such as mental status, diet intake, water intake, activity, and fur were observed. The body weight, tumor volume, tumor weight, and tumor-inhibiting rate were compared before and after administration. Morphological changes of liver cancer tissues were observed based on hematoxylin and eosin(HE) staining, and the expression of phosphorylated(p)-JNK, JNK, B-cell lymphoma-2(Bcl-2), Beclin-1, and light chain 3(LC3) in each tissue was detected by immunohistochemistry and Western blot. qRT-PCR was performed to detect the mRNA expression of JNK, Bcl-2, Beclin-1, and LC3. The general conditions of mice in model and low-dose acteoside groups were poor, while the general conditions of mice in the remaining three groups were improved. The body weight of mice in medium-dose acteoside group, high-dose acteoside group, and cisplatin group was smaller than that in model group(P<0.01). The tumor volume in model group was insignificantly different from that in low-dose acteoside group, and the volume in cisplatin group showed no significant difference from that in high-dose acteoside group. Tumor volume and weight in medium-dose and high-dose acteoside groups and cisplatin group were lower than those in the model group(P<0.001). The tumor-inhibiting rates were 10.72%, 40.32%, 53.79%, and 56.44% in the low-dose, medium-dose, and high-dose acteoside groups and cisplatin group, respectively. HE staining showed gradual decrease in the count of hepatoma cells and increasing sign of cell necrosis in the acteoside and cisplatin groups, and the necrosis was particularly obvious in the high-dose acteoside group and cisplatin group. Immunohistochemical results suggested that the expression of Beclin-1, LC3, p-JNK, and JNK was up-regulated in acteoside and cisplatin groups(P<0.05). The results of immunohistochemistry, Western blot, and qRT-PCR indicated that the expression of Bcl-2 was down-regulated in the medium-dose and high-dose acteoside groups and cisplatin group(P<0.01). Western blot showed that the expression of Beclin-1, LC3, and p-JNK was up-regulated in acteoside and cisplatin groups(P<0.01), and there was no difference in the expression of JNK among groups. qRT-PCR results showed that the levels of Beclin-1 and LC3 mRNA were up-regulated in the acteoside and cisplatin groups(P<0.05), and the level of JNK mRNA was up-regulated in medium-dose and high-dose acteoside groups and cisplatin group(P<0.001). Acteoside promotes apoptosis and autophagy of H22 cells in mice hepatoma cells by up-regulating the JNK signaling pathway, thus inhibiting tumor growth.
Male
;
Animals
;
Mice
;
Cisplatin/pharmacology*
;
Carcinoma, Hepatocellular/genetics*
;
MAP Kinase Signaling System
;
Beclin-1
;
Apoptosis
;
Liver Neoplasms/genetics*
;
Necrosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
RNA, Messenger/metabolism*
;
Autophagy
2.Type III secretory protein SINC of Chlamydia psittaci promotes host cell autophagy by activating the MAPK/ERK signaling pathway.
Xin Ding ZENG ; Li CHEN ; Peng ZHOU ; Ting TANG ; Xi CHEN ; Dan HU ; Chuan WANG ; Li Li CHEN
Journal of Southern Medical University 2023;43(2):294-299
OBJECTIVE:
To investigate the effects of SINC, a secreted protein of Chlamydia psittaci, on autophagy of host cells and the role of MAPK/ERK signaling pathway in mediating SINC-induced autophagy.
METHODS:
RAW 264.7 cells treated with recombinant SINC were examined for changes in expression levels of LC3-II, Beclin-1, phosphorylated and total ERK1/2 using Western blotting. The expression level of LC3 in the treated cells was detected using immunofluorescence analysis, and the formation of autophagosomes and autolysosomes was observed with transmission electron microscopy (TEM). The effect of pretreatment with U0126 (a specific ERK inhibitor) on the expression levels of LC3-II and Beclin-1 in RAW 264.7 cells exposed to different concentrations of SINC was examined using Western blotting, and LC3 puncta in the cells was detected with immunofluorescence analysis.
RESULTS:
The expression levels of LC3-II and Beclin-1 were the highest in RAW 264.7 cells treated with 2 μg/mL SINC for 12h. Immunofluorescence analysis showed exposure to SINC significantly increased the number of cells containing LC3 puncta, where the presence of autophagosomes and autolysosomes was detected. Exposure to 2 μg/mL SINC for 15 min resulted in the most significant increase of the ratios of p-ERK1/2/ERK1/2 in RAW 264.7 cells. Pretreatment of the cells with U0126 prior to SINC exposure significantly decreased the ratio of p-ERK1/2/ERK1/2, lowered the expression levels of LC3-II and Beclin-1, and decreased LC3 aggregation in the cells.
CONCLUSIONS
SINC exposure can induce autophagy in RAW 264.7 cells by activating the MAPK/ERK signaling pathway.
MAP Kinase Signaling System
;
Chlamydophila psittaci
;
Beclin-1
;
Signal Transduction
;
Autophagy
3.Y-box-binding protein 1 mediates sorafenib resistance via the extracellular signal regulated-protein kinase pathway in hepatoma cells.
Ting LIU ; Xiaoli XIE ; Sheng Xiong CHEN ; Yi Jun WANG ; Hui Qing JIANG
Chinese Journal of Hepatology 2023;31(4):401-407
Objective: To investigate the effect and possible mechanism of Y-box-binding protein 1 (YB-1) on sorafenib resistance in hepatoma cells. Methods: Lentiviral vectors with YB-1 overexpression and knockdown were constructed, respectively, to stimulate human hepatoma cell lines (HepG2 and Huh7) alone or in combination with sorafenib.The overexpression part of the experiment was divided into four groups: overexpression control group (Lv-NC), YB-1 overexpression group (Lv-YB-1), overexpression control combined with sorafenib resistance group (Lv-NC+sorafenib), YB-1 overexpression combined with sorafenib resistance group (Lv-YB-1 + sorafenib). The knockdown part of the experiment was also divided into four groups: knockdown control group (Lv-shNC), YB-1 knockdown group (Lv-shYB-1), knockdown control combined with sorafenib resistance group (Lv-shNC + sorafenib), YB-1 knockdown combined with sorafenib resistance group (Lv-shYB-1 + sorafenib). The occurrence of cell apoptosis was detected by TUNEL. The protein expression levels of phosphorylated (p)-ERK and ERK, key proteins in the extracellular regulatory protein kinase (ERK) signaling pathway, were detected by Western blot and quantified by ImageJ software. Subcutaneous tumorigenesis experiments were performed in nude mice. The effect of YB-1 on the efficacy of sorafenib was verified in vivo. The comparison between the two sets of data was carried out by an independent sample t-test. One-way ANOVA was used for comparisons between the three groups of data above. Results: Sorafenib had accelerated the occurrence of apoptosis in hepatoma cells, while YB-1 overexpression had inhibited cell apoptosis, and at the same time also inhibited the apoptosis-accelerating impact of sorafenib. On the contrary, YB-1 knockdown accelerated cell apoptosis and amplified the induction effect of sorafenib on apoptosis. Furthermore, sorafenib resistance had down-regulated p-ERK levels (HepG2: Lv-NC 0.685 ± 0.143, Lv-NC + sorafenib 0.315 ± 0.168, P < 0.05; Huh7: Lv-NC 0.576 ± 0.078, Lv-NC + sorafenib 0.150 ± 0.131, P < 0.01), whereas YB-1 overexpression had inhibited sorafenib resistance p-ERK reduction (HepG2: Lv-NC + sorafenib 0.315 ± 0.168, Lv-YB-1 + sorafenib 0.688 ± 0.042, P < 0.05; Huh7: Lv-NC + sorafenib 0.150 ± 0.131, Lv-YB-1 + sorafenib 0.553 ± 0.041, P < 0.05). YB-1 knockdown further increased sorafenib-induced p-ERK downregulation (HepG2: Lv-shNC + sorafenib 0.911 ± 0.252, Lv-shYB-1 + sorafenib 0.500 ± 0.201, P < 0.05; Huh7: Lv-shNC + sorafenib 0.577 ± 0.082, Lv-shYB-1 + sorafenib 0.350 ± 0.143, P < 0.05), which was further verified in naked mice (Lv-shNC + sorafenib 0.812 ± 0.279, Lv-shYB-1 + sorafenib 0.352 ± 0.109, P < 0.05). Conclusion: YB-1 mediates the occurrence of sorafenib resistance via the ERK signaling pathway in hepatoma cells.
Humans
;
Cell Line, Tumor
;
Sorafenib/pharmacology*
;
Drug Resistance, Neoplasm
;
Y-Box-Binding Protein 1/metabolism*
;
Carcinoma, Hepatocellular/metabolism*
;
MAP Kinase Signaling System
;
Animals
;
Mice
;
Mice, Nude
5.Clinical analysis of a child with cardio-facio-cutaneous syndrome due to a de novo variant of MAP2K1 gene.
Hongyao CAO ; Guanglei TONG ; Ru HUANG ; Taocheng ZHOU ; Weiwei ZHANG
Chinese Journal of Medical Genetics 2022;39(10):1129-1134
OBJECTIVE:
To explore the genotype-phenotype correlation of a patient with cardio-facio-cutaneous syndrome (CFCS) due to variant of the MAP2K1 gene.
METHODS:
DNA was extracted from peripheral blood samples of the infant and his parents and subjected to whole exome sequencing. Candidate variant was verified by Sanger sequencing.
RESULTS:
The patient had typical CFCS facies and developmental delay, and was found to harbor a de novo heterozygous c.389A>G (p.Tyr130Cys) missense variant in exon 3 of the MAP2K1 gene. Based on the American college of Medical Genetics and Genomics guidelines, this variant was classified as likely pathogenic.
CONCLUSION
This patient has differed from previously reported cases by having no cardiac anomaly or seizures but typical facial features and skin abnormalities accompanied by growth retardation, intellectual impairment, and urinary malformation. It has therefore enriched the phenotypic spectrum of CFCS due to variants of the MAP2K1 gene.
Ectodermal Dysplasia/genetics*
;
Facies
;
Failure to Thrive/genetics*
;
Heart Defects, Congenital
;
Humans
;
MAP Kinase Kinase 1/genetics*
;
Mutation
6.The combination of EGCG with warfarin reduces deep vein thrombosis in rabbits through modulating HIF-1α and VEGF via the PI3K/AKT and ERK1/2 signaling pathways.
Yan LI ; Jing-Ping GE ; Ke MA ; Yuan-Yuan YIN ; Juan HE ; Jian-Ping GU
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):679-690
Deep venous thrombosis (DVT) poses a major challenge to public health worldwide. Endothelial cell injury evokes inflammatory and oxidative responses that contribute to thrombus formation. Tea polyphenol (TP) in the form of epigallocatechin-3-gallate (EGCG) has anti-inflammatory and oxidative effect that may ameliorate DVT. However, the precise mechanism remains incompletely understood. The current study was designed to investigate the anti-DVT mechanism of EGCG in combination with warfarin (an oral anticoagulant). Rabbits were randomly divided into five groups. A DVT model of rats was established through ligation of the inferior vena cava (IVC) and left common iliac vein, and the animals were orally administered with EGCG, warfarin, or vehicle for seven days. In vitro studies included pretreatment of human umbilical vein endothelial cells (HUVECs) with different concentrations of EGCG for 2 h before exposure to hydrogen peroxide. Thrombus weight and length were examined. Histopathological changes were observed by hematoxylin-eosin staining. Blood samples were collected for detecting coagulation function, including thrombin and prothrombin times, activated partial thromboplastin time, and fibrinogen levels. Protein expression in thrombosed IVCs and HUVECs was evaluated by Western blot, immunohistochemical analysis, and/or immunofluorescence staining. RT-qPCR was used to determine the levels of AGTR-1 and VEGF mRNA in IVCs and HUVECs. The viability of HUVECs was examined by CCK-8 assay. Flow cytometry was performed to detect cell apoptosis and ROS generation was assessed by 2',7'-dichlorofluorescein diacetate reagent. In vitro and invivo studies showed that EGCG combined with warfarin significantly reduced thrombus weight and length, and apoptosis in HUVECs. Our findings indicated that the combination of EGCG and warfarin protects HUVECs from oxidative stress and prevents apoptosis. However, HIF-1α silencing weakened these effects, which indicated that HIF-1α may participate in DVT. Furthermore, HIF-1α silencing significantly up-regulated cell apoptosis and ROS generation, and enhanced VEGF expression and the activation of the PI3K/AKT and ERK1/2 signaling pathways. In conclusion, our results indicate that EGCG combined with warfarin modifies HIF-1α and VEGF to prevent DVT in rabbits through anti-inflammation via the PI3K/AKT and ERK1/2 signaling pathways.
Animals
;
Anticoagulants/pharmacology*
;
Catechin/analogs & derivatives*
;
Eosine Yellowish-(YS)/pharmacology*
;
Fibrinogen/pharmacology*
;
Hematoxylin/pharmacology*
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Hydrogen Peroxide/pharmacology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
MAP Kinase Signaling System
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Polyphenols/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger
;
Rabbits
;
Rats
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction
;
Sincalide/pharmacology*
;
Tea
;
Thrombin/pharmacology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Venous Thrombosis/pathology*
;
Warfarin/pharmacology*
7.Identification of a de novo MAP2K1 gene variant in an affected patient with Cardio-facio-cutaneous syndrome.
Qingming WANG ; Pengliang CHEN ; Qian PENG ; Jianxin LIU ; Yuling HUANG ; Zhihong TANG ; Yanhui LIU ; Haiming YUAN
Chinese Journal of Medical Genetics 2020;37(5):567-569
OBJECTIVE:
To explore the genotype-phenotype correlation of Cardio-facio-cutaneous syndrome (CFCS) caused by MAP2K1 gene variants.
METHODS:
Genomic DNA was extracted from peripheral blood sample from a child patient and his parents. Whole exome sequencing (WES) was carried out for the patient. Suspected variant was verified by Sanger sequencing.
RESULTS:
The patient was a 1-year-8-month old Chinese male who manifested short stature, psychomotor retardation, relative macrocephaly, distinctive facial features, and congenital heart disease. WES test revealed a heterozygous missense c.389A>G (p.Tyr130Cys) variant in the MAP2K1 gene. Sanger sequencing has confirmed the variant as de novo. According to ACMG/AMP guidelines, the variant was classified as pathogenic.
CONCLUSION
Compared with previously reported CFCS cases due to MAP2K1 variants. The patient showed obvious behavioral problems, good appetite and tricuspid regurgitation, which may to be novel features for CFCS.
China
;
Ectodermal Dysplasia
;
genetics
;
Facies
;
Failure to Thrive
;
genetics
;
Genetic Association Studies
;
Genetic Variation
;
Heart Defects, Congenital
;
genetics
;
Heterozygote
;
Humans
;
Infant
;
MAP Kinase Kinase 1
;
genetics
;
Male
;
Mutation
;
Whole Exome Sequencing
8.Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner.
Weiwei JIANG ; Fangfang CAI ; Huangru XU ; Yanyan LU ; Jia CHEN ; Jia LIU ; Nini CAO ; Xiangyu ZHANG ; Xiao CHEN ; Qilai HUANG ; Hongqin ZHUANG ; Zi-Chun HUA
Protein & Cell 2020;11(11):825-845
This study was designed to evaluate ERK5 expression in lung cancer and malignant melanoma progression and to ascertain the involvement of ERK5 signaling in lung cancer and melanoma. We show that ERK5 expression is abundant in human lung cancer samples, and elevated ERK5 expression in lung cancer was linked to the acquisition of increased metastatic and invasive potential. Importantly, we observed a significant correlation between ERK5 activity and FAK expression and its phosphorylation at the Ser
A549 Cells
;
Animals
;
Cell Movement
;
Epithelial-Mesenchymal Transition/genetics*
;
Focal Adhesion Kinase 1/metabolism*
;
Humans
;
Lung Neoplasms/pathology*
;
MAP Kinase Signaling System
;
Mice
;
Mitogen-Activated Protein Kinase 7/metabolism*
;
Neoplasm Invasiveness
;
Neoplasm Metastasis
;
Neoplasm Proteins/metabolism*
9.Rewiring ERBB3 and ERK signaling confers resistance to FGFR1 inhibition in gastrointestinal cancer harbored an ERBB3-E928G mutation.
Xiang YANG ; Hongxiao WANG ; Enjun XIE ; Biyao TANG ; Qingdian MU ; Zijun SONG ; Junyi CHEN ; Fudi WANG ; Junxia MIN
Protein & Cell 2020;11(12):915-920
Amino Acid Substitution
;
Antineoplastic Agents/pharmacology*
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
Gastrointestinal Neoplasms/pathology*
;
Humans
;
MAP Kinase Signaling System/genetics*
;
Mutation, Missense
;
Receptor, ErbB-3/metabolism*
;
Receptor, Fibroblast Growth Factor, Type 1/metabolism*
10.Effects of ELK-1/JNK/c-Fos on apoptosis of rat hippocampal neurons cultured in vitro with Zuogui Jiangtang Jieyu Formula in simulated diabetes mellitus complicated with depression.
Zhuo LIU ; Jian LIU ; Jia LING ; Qin YANG ; Hui YANG ; Pan MENG ; Qing DU ; Hong-Qing ZHAO ; Yu-Hong WANG
Chinese Journal of Applied Physiology 2019;35(1):50-54
OBJECTIVE:
To study the effects of Zuogui Jiangtang Jieyu Formula (ZGJTJYF, the Chinese Medicine) on hippocampal neuron apoptosis in diabetes mellitus complicated with depression (DD).
METHODS:
The primary cultured hippocampal neurons were treated with high glucose (150 mmol/L) and corticosterone (200 micromol/L) to establish the cell model of DD in vitro. The cultured hippocampal neurons were randomly divided into five groups: blank serum group, normal group, Zuogui Jiangtang Jieyu recipe drug-containing serum group, positive drug (metformin + fluoxetine) drug-containing serum group and model group (three compound holes in each group). The model group and the normal group were given the same amount of culture medium, and the other groups were given the corresponding serum with 10% volume fraction for 18 hours. Hoechst staining, high content cell imaging and RT-PCR were used to detect the apoptosis of hippocampal neurons and the expressions of apoptosis-related ETS-like 1 transcription factor(ELK-1), C-Jun N-terminal kinase(JNK) and c-Fos proteins and genes.
RESULTS:
Compared with the blank group, the apoptotic number of hippocampal neurons in the model group was increased significantly, and the expression levels of ELK-1, JNK and c-Fos were increased significantly (P<0.05). Compared with the model group, the local bright spots of hippocampal neurons in the Zuogui Jiangtang Jieyu recipe-containing serum group and the positive drug-containing serum group were decreased significantly, and the number of apoptotic cells was decreased significantly. The expressions of JNK, c-fos protein and mRNA were down-regulated significantly (P< 0.05), and the neural network and dendritic junction were improved significantly.
CONCLUSION
Zuo Gui Jiang Tang Jie Yu Formula can reverse the expressions of ELK-1, JNK and c-Fos signals in hippocampal neurons under DD environment and play an anti-apoptotic effect.
Animals
;
Apoptosis
;
drug effects
;
Depression
;
drug therapy
;
Diabetes Complications
;
drug therapy
;
Diabetes Mellitus
;
Drugs, Chinese Herbal
;
pharmacology
;
Hippocampus
;
drug effects
;
MAP Kinase Kinase 4
;
drug effects
;
Neurons
;
Proto-Oncogene Proteins c-fos
;
drug effects
;
Random Allocation
;
Rats
;
ets-Domain Protein Elk-1
;
drug effects

Result Analysis
Print
Save
E-mail