1.Clinical and genetic analysis of two children with Neurodevelopmental disorder with hypotonia, stereotypic hand movements, and impaired language due to de novo variants of MEF2C gene.
Lulu YAN ; Danyan ZHUANG ; Youqu TU ; Yuxin ZHANG ; Yingwen LIU ; Yan HE ; Haibo LI
Chinese Journal of Medical Genetics 2023;40(10):1252-1256
OBJECTIVE:
To explore the clinical characteristics and genetic etiology for two children with Neurodevelopmental disorder with hypotonia, stereotypic hand movements, and impaired language (MEDHSIL).
METHODS:
Two children who had visited the Ningbo Women and Children's Hospital on October 15, 2021 were selected as the study subjects. Whole exome sequencing (WES) was carried out for both patients. Candidate variants were verified by Sanger sequencing of their family members.
RESULTS:
The two children were respectively found to harbor a heterozygous c.138delC (p.Ile47Serfs*42) variant and a c.833del (p.L278*) variant of the MEF2C gene. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were predicted to be pathogenic (PVS1+PS2+PM2_Supporting).
CONCLUSION
The c.138delC and c.833del variants of the MEF2C gene probably underlay the pathogenesis of MEDHSIL in the two children. Above findings have enriched the mutational spectrum of the MEF2C gene and enabled genetic counseling for their families.
Child
;
Humans
;
Family
;
Genetic Counseling
;
Language
;
MEF2 Transcription Factors/genetics*
;
Muscle Hypotonia/genetics*
;
Neurodevelopmental Disorders
2.Identification and expression analysis of MADS-box gene family in Docynia delavayi (Franch.) Schneid.
Xiwei WANG ; Can CHEN ; Dawei WANG
Chinese Journal of Biotechnology 2023;39(7):2897-2913
MADS-box gene family is a significant transcription factor family that plays a crucial role in regulating plant growth, development, signal transduction, and other processes. In order to study the characteristics of MADS-box gene family in Docynia delavayi (Franch.) Schneid. and its expression during different stages of seed germination, this study used seedlings at different stages of germination as materials and screened MADS-box transcription factors from the transcriptome database of D. delavayi using bioinformatics methods based on transcriptome sequencing. The physical and chemical properties, protein conservative motifs, phylogenetic evolution, and expression patterns of the MADS-box transcription factors were analyzed. Quantitative real-time PCR (qRT-PCR) was used to verify the expression of MADS-box gene family members during different stages of seed germination in D. delavayi. The results showed that 81 genes of MADS-box gene family were identified from the transcriptome data of D. delavayi, with the molecular weight distribution ranged of 6 211.34-173 512.77 Da and the theoretical isoelectric point ranged from 5.21 to 10.97. Phylogenetic analysis showed that the 81 genes could be divided into 15 subgroups, among which DdMADS27, DdMADS42, DdMADS45, DdMADS46, DdMADS53, DdMADS61, DdMADS76, DdMADS77 and DdMADS79 might be involved in the regulation of ovule development in D. delavayi. The combination of the transcriptome data and the qRT-PCR analysis results of D. delavayi seeds indicated that DdMADS25 and DdMADS42 might be involved in the regulation of seed development, and that DdMADS37 and DdMADS38 might have negative regulation effects on seed dormancy. Previous studies have reported that the MIKC* subgroup is mainly involved in regulating flower organ development. For the first time, we found that the transcription factors of the MIKC* subgroup exhibited a high expression level at the early stage of seed germination, so we speculated that the MIKC* subgroup played a regulatory role in the process of seed germination. To verify the accuracy of this speculation, we selected DdMADS60 and DdMADS75 from the MIKC* subgroup for qRT-PCR experiments, and the experimental results were consistent with the expression trend of transcriptome sequencing. This study provides a reference for further research on the biological function of D. delavayi MADS-box gene family from the perspective of molecular evolution.
MADS Domain Proteins/metabolism*
;
Phylogeny
;
Gene Expression Regulation, Plant
;
Genes, Plant
;
Transcription Factors/genetics*
;
Plant Proteins/metabolism*
;
Gene Expression Profiling
3.Genetic analysis of a case with MEF2C deletion in association with 5q14.3 microdeletion syndrome.
Taocheng ZHOU ; Wei SU ; Dong LIANG ; Yanhong XU ; Yuanyuan LUO ; Guanglei TONG
Chinese Journal of Medical Genetics 2021;38(8):779-782
OBJECTIVE:
To explore the genetic basis for a child with febrile seizures.
METHODS:
Peripheral venous blood samples were taken from the child and his parents for the analysis of chromosomal karyotype and dynamic variant of the FMR1 gene. The family trio was also subjected to target capture and next generation sequencing (NGS) with a gene panel related to developmental retardation, mental retardation, language retardation, epilepsy and special facial features.
RESULTS:
The child was found to have a normal karyotype by conventional cytogenetic analysis (400 bands). No abnormal expansion was found with the CGG repeats of the FMR1 gene. NGS revealed that the child has carried a heterozygous c.864+1 delG variant of the MEF2C gene, which may lead to abnormal splicing and affect its protein function. The same variant was found in neither parent, suggesting that it has a de novo origin. Based on the American College of Medical Genetics and Genomics standards and guidelines, c.864+1delG variant of MEF2C gene was predicted to be pathogenic (PVS1+PS2+PM2).
CONCLUSION
MEF2C, as the key gene for chromosome 5q14.3 deletion syndrome which was speculated as a cause for febrile seizures, has an autosomal dominant effect. The c.864+1delG variant of the MEF2C gene may account for the febrile seizures in this patient.
Child
;
Chromosome Deletion
;
Chromosome Disorders
;
Epilepsy
;
Fragile X Mental Retardation Protein
;
Humans
;
Intellectual Disability/genetics*
;
Karyotyping
;
MEF2 Transcription Factors/genetics*
5.Phylogenetic and expression analysis of SEPALLATA-like gene in Brassica oleracea L. var. acephala.
Yuanping XIANG ; Yuntong HUANG ; Hongjun HE ; Qijiang XU
Chinese Journal of Biotechnology 2020;36(11):2398-2412
The E class MADS-box genes SEPALLATA (SEP)-like play critical roles in angiosperm reproductive growth, especially in floral organ differentiation. To analyze the sequence characteristics and spatio-temporal expression patterns of E-function MADS-box SEP-like genes during kale (Brassica oleracea L. var. acephala) flower development, BroaSEP1/2/3 (GenBank No. KC967957, KC967958, KC967960) homologues, three kale SEP MADS-box gene, were isolated from the kale variety 'Fourteen Line' using Rapid amplification of cDNA ends (RACE). Sequence and phylogenetic analysis indicated that these three SEP genes had a high degree of identity with SEP1, SEP2, SEP3 from Brassica oleracea var. oleracea, Brassica rapa, Raphanus sativus and Brassica napus, respectively. Alignment of the predicted amino acid sequences from these genes, along with previously published subfamily members, demonstrated that these genes comprise four regions of the typical MIKC-type MADS-box proteins: the MADS domain, intervening (I) domain and keratin-like (K) domain, and the C-terminal domain SEPⅠ and SEP Ⅱ motif. The longest open reading frame deduced from the cDNA sequences of BroaSEP1, BroaSEP2, and BroaSEP3 appeared to be 801 bp, 759 bp, 753 bp in length, respectively, which encoded proteins of 266, 252, and 250 amino acids respectively. Expression analyses using semi-quantitative RT-PCR and quantitative real-time PCR indicate that BroaSEP1/2/3 are specifically expressed in floral buds of kale during flower development process. The expression levels of the three genes are very different at different developmental stages, also in wild type, mutant flower with increased petals, and mutant flower with decreased petals. These different patterns of gene expression maybe cause the flowers to increase or decrease the petal number.
Brassica/metabolism*
;
Flowers/genetics*
;
Gene Expression Regulation, Plant
;
MADS Domain Proteins/metabolism*
;
Phylogeny
;
Plant Proteins/metabolism*
6.Effect of Xiaozhong Zhitong Ointment on MEF2 mRNA and protein expression in rats with gastrointestinal muscle injury.
China Journal of Orthopaedics and Traumatology 2019;32(6):578-581
OBJECTIVE:
To investigate the effect of Xiaozhong Zhitong Ointment(XZZTO) on remodeling and repair of skeletal muscle injury in rats based on the expression mechanism of microRNA.
METHODS:
The rat gastrocnemius injury model was established by blunt contusion model. The expression of MEF2 gene and protein in gastrocnemius muscle was detected by quantitative PCR at 4, 7, 14 and 21 days after injury with XZZTO. The mechanism of the effect of XZZTO on the muscle remodeling and repair of rat gastrocnemius contusion model was discussed.
RESULTS:
The expression level of MEF2 in the treatment group was significantly higher than that of the control group and model group, which further confirmed the important role of MEF2 in inducing skeletal muscle remodeling and repair process in the topical drugs. The expression of MEF2 increased at 7 days after injury and remained at a high level until 21 days after injury. Compared with the model group, the peak expression period was about 14 days, and then returned to the general state.
CONCLUSIONS
The expression level of MEF2 shows an upward trend. Even 21 days after injury, the expression of MEF2 dose not show a significant downward trend. It can be seen that XZZTO can promote the expression of MEF2. At the same time, XZZTO can regulate the regeneration and repair of skeletal muscle. Therefore, XZZTO can play a regeneration and repair role after skeletal muscle injury through gene regulation.
Animals
;
Contusions
;
Gastrointestinal Tract
;
Gene Expression Regulation
;
MEF2 Transcription Factors
;
genetics
;
Muscle, Skeletal
;
Ointments
;
Proteins
;
RNA, Messenger
;
Rats
7.Regulations of RLM1 gene affect the anti-autolytic ability of lager yeast.
Jinjing WANG ; Mengqi LI ; Dan HOU ; Weina XU ; Feiyun ZHENG ; Chunfeng LIU ; Chengtuo NIU ; Qi LI
Chinese Journal of Biotechnology 2019;35(6):1059-1070
The autolysis of brewer's yeast seriously affects the quality of beer and the quality of yeast is considered as one of the key factors in beer brewing. Previous studies on brewer's yeast autolysis showed that RLM1 gene, an important transcription factor in cell integrity pathway, is closely related to the autolysis of yeast. In this study, RLM1 was knocked out and overexpressed in a haploid brewer's yeast. RLM1 disruption resulted in poor anti-autolysis performance of yeast, whereas overexpression of RLM1 contributed to the anti-autolytic ability of yeast. In addition, RLM1 gene knockout affected the osmotic stress resistance, cell wall damage resistance, nitrogen starvation resistance and temperature tolerance of yeast strain. The transcriptional level of GAS1 involved in cell wall assembly and DNA damage response was regulated along with the expression of RLM1, whereas other genes in CWI pathway did not show apparent regularity. RLM1 might mainly affect the expression of GAS1 so as to improve the stress resistance of lager yeast in harsh environment. The result from this study help further understand the mechanism of yeast autolysis and lay a foundation for breeding brewer's yeast strain with better anti-autolytic ability.
Autolysis
;
Beer
;
Cell Wall
;
Humans
;
MADS Domain Proteins
;
Saccharomyces cerevisiae
;
Saccharomyces cerevisiae Proteins
8.Multi-phenotypic Role of Serum Response Factor in the Gastrointestinal System.
Journal of Neurogastroenterology and Motility 2016;22(2):193-200
Serum response factor (SRF) is a master transcription factor of the actin cytoskeleton that binds to highly conserved CArG boxes located within the majority of smooth muscle cell (SMC)-restricted promoters/enhancers. Although most studies of SRF focus on skeletal muscle, cardiac muscle, and vascular SMCs, SRF research has recently expanded into the gastrointestinal (GI) system. Genome scale analyses of GI SMC transcriptome and CArG boxes (CArGome) have identified new SRF target genes. In addition to circular and longitudinal smooth muscle layers, SRF is also expressed in GI mucosa and cancers. In the GI tract, SRF is the central regulator of genes involved in apoptosis, dedifferentiation, proliferation, and migration of cells. Since SRF is the cell phenotypic modulator, it may play an essential role in the development of myopathy, hypertrophy, ulcers, gastric and colon cancers within the GI tract. Given the multi-functional role displayed by SRF in the digestive system, SRF has received more attention emerging as a potential therapeutic target. This review summarizes the findings in SRF research pertaining to the GI tract and provides valuable insight into future directions.
Actin Cytoskeleton
;
Apoptosis
;
Colonic Neoplasms
;
Digestive System
;
Gastrointestinal Diseases
;
Gastrointestinal Tract
;
Genome
;
Hypertrophy
;
MicroRNAs
;
Mucous Membrane
;
Muscle Cells
;
Muscle, Skeletal
;
Muscle, Smooth
;
Muscular Diseases
;
Myocardium
;
Myocytes, Smooth Muscle
;
Serum Response Factor*
;
Stomach Ulcer
;
Transcription Factors
;
Transcriptome
9.Expression of Myocardial Specificity Markers MEF-2C and Cx43 in Rat Bone Marrow-derived Mesenchymal Stem Cells Induced by Electrical Stimulation In Vitro.
Min TANG ; Gang YANG ; Jian JIANG ; Xueling HE ; Huiming LI ; Mengying ZHANG ; Wenchao WU ; Xiaojing LIU ; Liang LI
Journal of Biomedical Engineering 2015;32(3):629-634
Bone marrow-derived mesenchymal stem cells (BMSCs) for repairing damaged heart tissue are a new kind of important treatment options because of their potential to differentiate into cardiomyocytes. We in this experiment investigated the effect of different electrical stimulation time on the expression of myocardial specificity gene and protein in rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. The rBMSCs of second or third generation were randomly divided into three groups, i.e, electrical stimulation (ES) group, 5-Azacytidine (5-Aza) group and the control group. The rBMSCs in the ES groups with complete medium were exposed to 2 V, 2 Hz, 5 ms electrical stimulation for 0. 5 h, 2 h, 4 h, and 6 h respectively every day for 10 days. Those in the 5-Aza group were induced by 5-Aza (10 μmol/L) for 24 h, and then cultured with complete medium for 10 days. Those in the control group were only cultured with complete medium, without any treatment, for 10 days. The rBMSCs' morphological feature in each group was observed with inverted phase microscope. The mRNA expression of myocyte-specific enhancer factor 2C (MEF-2C) and connexin 43 (Cx43) were examined with Real-Time quantitative PCR and the protein expression of MEF-2C, Cx43 were detected with Western Blot method. The results showed that the mRNA expression level of the MEF-2C, Cx43 and the protein expression level of MEF-2C, Cx43 were significantly higher in the ES group and 5-Aza group than those in the relative control group (P < 0.05). It suggests that electrical stimulation could play a part of role in the induction of the rBMSCs to differentiate into the cariomyocyte-like cells in vitro and the effectiveness of the electrical stimulation with 2 h/d had the best in our experiment. But the mechanism how electrical stimulation promotes the differentiation of rBMSC into cardiomyocyte is still unclear.
Animals
;
Biomarkers
;
metabolism
;
Cell Differentiation
;
Cells, Cultured
;
Connexin 43
;
metabolism
;
Electric Stimulation
;
MEF2 Transcription Factors
;
metabolism
;
Mesenchymal Stromal Cells
;
cytology
;
metabolism
;
Myocytes, Cardiac
;
cytology
;
RNA, Messenger
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
10.Myocyte Enhancer Factor-2A Gene Mutation and Coronary Artery Disease.
Chinese Medical Journal 2015;128(19):2688-2691
BACKGROUNDPremature ventricular contractions (PVCs) are common in the general population, and frequent PVCs may result in the poor quality of life or even the damage of cardiac function. We examined the efficacy and safety of a traditional Chinese medicine Wenxin Keli for the treatment of frequent PVCs among a relatively large Chinese cohort.
METHODSWe performed a randomized, double-blind, placebo-controlled, parallel-group, multicenter trial. A total of 1200 eligible participants were randomly assigned in a ratio of 1:1 to receive Wenxin Keli or the placebo for 4 weeks. The primary and secondary endpoint was the change of PVC numbers and PVC-related symptoms after a 4-week treatment compared with baseline, respectively. In addition, vital signs, laboratory values, and electrocardiographic parameters were assessed in a safety analysis.
RESULTSAt the initial evaluation, no significant differences in the baseline characteristics were observed between the Wenxin Keli group and the placebo group. A smaller number of PVCs was observed after the 4-week treatment than at baseline, in both the Wenxin Keli group (5686 ± 5940 vs. 15,138 ± 7597 beats/d, P < 0.001) and the placebo group (10,592 ± 8009 vs. 14,529 ± 5929 beats/d, P < 0.001); moreover, the Wenxin Keli group demonstrated a significantly greater reduction in the frequency of PVCs than the placebo group (P < 0.001). In a full analysis set, patients in the Wenxin Keli group exhibited significantly higher total effective responses in the reduction of PVCs compared to those in the placebo group (83.8% vs. 43.5%,P < 0.001). The per-protocol analysis yielded similar results (83.0% vs. 39.3%,P < 0.001). Treatment with Wenxin Keli also demonstrated superior performance compared to the placebo with respect to PVC-related symptoms. No severe adverse effects attributable to Wenxin Keli were reported.
CONCLUSIONSWenxin Keli treatment effectively reduced the overall number of PVCs and alleviated PVC-related symptoms in patients without structural heart diseases and had no severe side effects.
Coronary Artery Disease ; genetics ; prevention & control ; Double-Blind Method ; Drugs, Chinese Herbal ; adverse effects ; therapeutic use ; Humans ; MEF2 Transcription Factors ; genetics ; Mutation ; genetics ; Myocardial Infarction ; drug therapy ; genetics ; Randomized Controlled Trials as Topic ; Ventricular Premature Complexes ; drug therapy ; genetics

Result Analysis
Print
Save
E-mail