1.Sphingosine-1-phosphate hinders the osteogenic differentiation of dental pulp stem cells in association with AKT signaling pathways.
Bongkun CHOI ; Ji-Eun KIM ; Si-On PARK ; Eun-Young KIM ; Soyoon OH ; Hyuksu CHOI ; Dohee YOON ; Hyo-Jin MIN ; Hyung-Ryong KIM ; Eun-Ju CHANG
International Journal of Oral Science 2022;14(1):21-21
Sphingosine-1-phosphate (S1P) is an important lipid mediator that regulates a diverse range of intracellular cell signaling pathways that are relevant to tissue engineering and regenerative medicine. However, the precise function of S1P in dental pulp stem cells (DPSCs) and its osteogenic differentiation remains unclear. We here investigated the function of S1P/S1P receptor (S1PR)-mediated cellular signaling in the osteogenic differentiation of DPSCs and clarified the fundamental signaling pathway. Our results showed that S1P-treated DPSCs exhibited a low rate of differentiation toward the osteogenic phenotype in association with a marked reduction in osteogenesis-related gene expression and AKT activation. Of note, both S1PR1/S1PR3 and S1PR2 agonists significantly downregulated the expression of osteogenic genes and suppressed AKT activation, resulting in an attenuated osteogenic capacity of DPSCs. Most importantly, an AKT activator completely abrogated the S1P-mediated downregulation of osteoblastic markers and partially prevented S1P-mediated attenuation effects during osteogenesis. Intriguingly, the pro-inflammatory TNF-α cytokine promoted the infiltration of macrophages toward DPSCs and induced S1P production in both DPSCs and macrophages. Our findings indicate that the elevation of S1P under inflammatory conditions suppresses the osteogenic capacity of the DPSCs responsible for regenerative endodontics.
Cell Differentiation
;
Cell Proliferation
;
Cells, Cultured
;
Dental Pulp/metabolism*
;
Lysophospholipids
;
Osteogenesis
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction
;
Sphingosine/analogs & derivatives*
;
Stem Cells
2.Research advances of the roles of sphingosine-1-phosphate in acute lung injury.
Meng Yan WANG ; Pei CUI ; Hai Ming XIN
Chinese Journal of Burns 2022;38(5):496-500
Sphingosine-1-phosphate (S1P) is the main metabolite produced in the process of phospholipid metabolism, which can promote proliferation, migration, and apoptosis of cells, and maintain the barrier function of vascular endothelium. The latest researches showed that S1P can alleviate acute lung injury (ALI) and the inflammation caused by ALI, while the dosage of S1P is still needed to be considered. Mesenchymal stem cells (MSCs) have been a emerging therapy with potential therapeutic effects on ALI because of their characteristics of self-replication and multi-directional differentiation, and their advantages in hematopoiesis, immune regulation, and tissue repair. S1P can promote differentiation of MSCs and participate in immune regulation, while MSCs can regulate the homeostasis of S1P in the body. The synergistic effect of S1P and MSC provides a new treatment method for ALI. This article reviews the production and biological function of S1P, receptor and signal pathway of S1P, the therapeutic effects of S1P on ALI, and the research advances of S1P combined with MSCs in the treatment of ALI, aiming to provide theoretical references for the development of S1P targeted drugs in the treatment of ALI and the search for new combined treatment schemes for ALI.
Acute Lung Injury
;
Animals
;
Lung/metabolism*
;
Lysophospholipids/pharmacology*
;
Mice
;
Mice, Inbred C57BL
;
Sphingosine/pharmacology*
3.The Phospholipid Linoleoylglycerophosphocholine as a Biomarker of Directly Measured Insulin Resistance.
Maria Camila PÉREZ-MATOS ; Martha Catalina MORALES-ÁLVAREZ ; Freddy Jean Karlo TOLOZA ; Maria Laura RICARDO-SILGADO ; Jose Oscar MANTILLA-RIVAS ; Jairo Arturo PINZÓN-CORTES ; Maritza PEREZ-MAYORGA ; Elizabeth JIMÉNEZ ; Edwin GUEVARA ; Carlos O MENDIVIL
Diabetes & Metabolism Journal 2017;41(6):466-473
BACKGROUND: Plasma concentrations of some lysophospholipids correlate with metabolic alterations in humans, but their potential as biomarkers of insulin resistance (IR) is insufficiently known. We aimed to explore the association between plasma linoleoylglycerophosphocholine (LGPC) and objective measures of IR in adults with different metabolic profiles. METHODS: We studied 62 men and women, ages 30 to 69 years, (29% normal weight, 59% overweight, 12% obese). Participants underwent a 5-point oral glucose tolerance test (5p-OGTT) from which we calculated multiple indices of IR and insulin secretion. Fifteen participants additionally underwent a hyperinsulinemic-euglycemic clamp for estimation of insulin-stimulated glucose disposal. Plasma LGPC was determined using high performance liquid chromatography/time-of-flight mass spectrometry. Plasma LGPC was compared across quartiles defined by the IR indices. RESULTS: Mean LGPC was 15.4±7.6 ng/mL in women and 14.1±7.3 ng/mL in men. LGPC did not correlate with body mass in-dex, percent body fat, waist circumference, blood pressure, glycosylated hemoglobin, log-triglycerides, or high density lipoprotein cholesterol. Plasma LGPC concentrations was not systematically associated with any of the studied 5p-OGTT-derived IR indices. However, LGPC exhibited a significant negative correlation with glucose disposal in the clamp (Spearman r=−0.56, P=0.029). Despite not being diabetic, participants with higher plasma LGPC exhibited significantly higher post-challenge plasma glucose excursions in the 5p-OGTT (P trend=0.021 for the increase in glucose area under the curve across quartiles of plasma LGPC). CONCLUSION: In our sample of Latino adults without known diabetes, LGPC showed potential as a biomarker of IR and impaired glucose metabolism.
Adipose Tissue
;
Adiposity
;
Adult
;
Biomarkers
;
Blood Glucose
;
Blood Pressure
;
Cholesterol, HDL
;
Female
;
Glucose
;
Glucose Tolerance Test
;
Hemoglobin A, Glycosylated
;
Hispanic Americans
;
Humans
;
Insulin Resistance*
;
Insulin*
;
Lysophospholipids
;
Male
;
Mass Spectrometry
;
Metabolism
;
Metabolome
;
Obesity
;
Overweight
;
Plasma
;
Waist Circumference
4.Recent advances in study of sphingolipids on liver diseases.
Shao-yuan WANG ; Jin-lan ZHANG ; Dan ZHANG ; Xiu-qi BAO ; Hua SUN
Acta Pharmaceutica Sinica 2015;50(12):1551-1558
Sphingolipids, especially ceramide and S1P, are structural components of biological membranes and bioactive molecules which participate in diverse cellular activities such as cell division, differentiation, gene expression and apoptosis. Emerging evidence demonstrates the role of sphingolipids in hepatocellular death, which contributes to the progression of several liver diseases including ischaemia-reperfusion liver injury, steatohepatitis or hepatocarcinogenesis. Furthermore, some data indicate that the accumulation of some sphingolipids contributes to the hepatic dysfunctions. Hence, understanding of sphingolipid may open up a novel therapeutic avenue to liver diseases. This review focuses on the progress in the sphingolipid metabolic pathway with a focus on hepatic diseases and drugs targeting the sphingolipid pathway.
Apoptosis
;
Ceramides
;
metabolism
;
Fatty Liver
;
metabolism
;
physiopathology
;
Humans
;
Liver Diseases
;
metabolism
;
physiopathology
;
Lysophospholipids
;
metabolism
;
Reperfusion Injury
;
metabolism
;
physiopathology
;
Sphingolipids
;
metabolism
;
Sphingosine
;
analogs & derivatives
;
metabolism
5.Lysophosphatidic acid (LPA) stimulates invasion and metastatic colonization of ovarian cancer cells through Rac activation.
Xuechen YU ; Yuanzhen ZHANG ; Huijun CHEN ; Email: KARREL@SINA.COM.
Chinese Journal of Oncology 2015;37(2):95-100
OBJECTIVETo investigate the mechanisms of lysophosphatidic acid (LPA) in stimulating invasion and metastatic colonization of ovarian cancer cells.
METHODSThe metastatic ability in vivo of ovarian cancer SK-OV3, HEY, OVCAR3, and IGROV1 cells was determined in tumor-bearing nude mouse models. Matrigel assay was used to detect the changes of response in vitro of ovarian cancer cells to LPA after Rac(-) or Rac(+) adenovirus treatment. LPA-induced Rho GTPase activation was detected by GST-fusion protein binding assay.
RESULTSThe peritoneal metastatic colonization assay showed overt metastatic colonization in mice receiving SK-OV3 and HEY cell inoculation, indicating that they are invasive cells. Metastatic colonization was not detected in animals receiving OVCAR3 and IGROV1 cells, indicating that these cells are non-invasive cells. In the matrigel invasion assay, exposure to LPA led to a notably greater migratory response in metastatic SK-OV3 and HEY cells (Optical density: SK-OV3 cells: 0.594±0.023 vs. 1.697±0.049, P<0.01; HEY cells: 0.804±0.070 vs. 1.851±0.095, P<0.01). But LPA did little in the non-metastatic OVCAR3 and IGROV1 cells (Optical density A: OVCAR3 cells: 0.336±0.017 vs. 0.374±0.007, P>0.05; IGROV1 cells: 0.491±0.036 vs. 0.479±0.061, P>0.05). LPA migratory responses of ovarian cancer cells were closely related to their metastatic colonization capabilities (r = 0.983, P<0.05). Rac(-) blocked the LPA response of invasive SK-OV3 and HEY cells (LPA-induced fold increase of cell migration: SK-OV3 cells: 2.988±0.095 vs. 0.997±0.100,P=0.01; HEY cells: 2.404±0.059 vs. 0.901±0.072, P=0.01). But Rac(+) confered the non-invasive cells with LPA response and invasion capability (LPA-induced fold increase of cell migration: OVCAR3 cells: 1.072±0.080 vs. 1.898±0.078, P<0.01; IGROV1 cells: 1.002±0.044 vs. 2.141±0.057, P<0.05). Among Rho GTPases, only Rac activation was different between ovarian cancer cell lines with different metastatic capability after LPA stimulation: Cdc42 could not be activated in both the invasive and non-invasive cell lines. RhoA could be activated in both the invasive and non-invasive cell lines. Rac could be activated by LPA in the invasive ovarian cancer cell lines. However, Rac could not be activated in the non-invasive cell lines.
CONCLUSIONLysophosphatidic acid stimulates invasion and metastasis of ovarian cancer cells through Rac activation.
Animals ; Cell Movement ; Female ; Humans ; Lysophospholipids ; metabolism ; Mice ; Ovarian Neoplasms ; metabolism ; Tumor Cells, Cultured ; rho GTP-Binding Proteins ; rhoA GTP-Binding Protein
6.Role of LPA and the Hippo pathway on apoptosis in salivary gland epithelial cells.
Sung Min HWANG ; MeiHong JIN ; Yong Hwan SHIN ; Seul KI CHOI ; Eun NAMKOONG ; MinKyoung KIM ; Moon Yong PARK ; Kyungpyo PARK
Experimental & Molecular Medicine 2014;46(12):e125-
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid involved in numerous physiological responses. However, the expression of LPA receptors and the role of the Hippo signaling pathway in epithelial cells have remained elusive. In this experiment, we studied the functional expression of LPA receptors and the associated signaling pathway using reverse transcriptase-PCR, microspectrofluorimetry, western blotting and immunocytochemistry in salivary gland epithelial cells. We found that LPA receptors are functionally expressed and involved in activating the Hippo pathway mediated by YAP/TAZ through Lats/Mob1 and RhoA/ROCK. Upregulation of YAP/TAZ-dependent target genes, including CTGF, ANKRD1 and CYR61, has also been observed in LPA-treated cells. In addition, based on data suggesting that tumor necrosis factor (TNF)-alpha induces cell apoptosis, LPA upregulates TNF-induced caspase-3 and cleaved Poly(ADP-ribose)polymerase (PARP). However, small interfering RNA treatment to Yes-associated protein (YAP) or transcriptional co-activator with a PDZ-binding motif (TAZ) significantly decreased TNF-alpha- and LPA-induced apoptosis, suggesting that YAP and TAZ modulate the apoptotic pathway in salivary epithelial cells.
Adaptor Proteins, Signal Transducing/genetics/metabolism
;
*Apoptosis
;
Cell Line
;
Epithelial Cells/*cytology/metabolism
;
Gene Expression Regulation
;
Humans
;
Intracellular Signaling Peptides and Proteins/genetics/metabolism
;
Lysophospholipids/*metabolism
;
Phosphoproteins/genetics/metabolism
;
Protein-Serine-Threonine Kinases/*metabolism
;
RNA Interference
;
RNA, Small Interfering/genetics
;
Receptors, Lysophosphatidic Acid/genetics/*metabolism
;
Salivary Glands/*cytology/metabolism
;
*Signal Transduction
;
Tumor Necrosis Factor-alpha/metabolism
;
rho-Associated Kinases/metabolism
;
rhoA GTP-Binding Protein/metabolism
7.Role of orphan G protein-coupled receptor 55 in diabetic gastroparesis in mice.
Xu-Hong LIN ; ; Dan-Dan WEI ; Hui-Chao WANG ; Bin WANG ; Chun-Yang BAI ; Ya-Qiang WANG ; Guo-En LI ; Hui-Ping LI ; Xue-Qun REN
Acta Physiologica Sinica 2014;66(3):332-340
The aim of the present study was to explore the role of orphan G protein-coupled receptor 55 (GPR55) in diabetic gastroparesis (DG). Streptozotocin (STZ) was used to mimic the DG model, and the body weight and blood glucose concentration were tested 4 weeks after STZ injection (i.p.). Electrogastrogram and phenolsulfonphthalein test were used for detecting gastric emptying. Motilin (MTL), gastrin (GAS), vasoactive intestinal peptide (VIP), and somatostatin (SS) levels in plasma were determined using radioimmunology. Real-time PCR and Western blot were applied to identify the expression of GPR55 in gastric tissue, and immunohistochemistry was used to detect the distribution. The effect of lysophosphatidylinositol (LPI), an agonist of GPR55, was observed. STZ mice showed increased blood glucose concentration, lower body weight, decreased amplitude of slow wave, and delayed gastric emptying. LPI antagonized these effects of STZ. Compared to the control group, STZ caused significant decreases of MTL and GAS levels (P < 0.01), as well as increases of SS and VIP levels (P < 0.01). The changes of these hormones induced by STZ were counteracted when using LPI. GPR55 located in mice stomach, and it was up-regulated in DG. Although LPI showed no effects on the distribution and expression of GPR55 in normal mice, it could inhibit STZ-induced GPR55 up-regulation. These results suggest GPR55 is involved in the regulation of gastric movement of DG, and may serve as a new target of DG treatment. LPI, an agonist of GPR55, can protect against STZ-induced DG, and the mechanism may involve the change of GPR55 expression and modification of gastrointestinal movement regulating hormones.
Animals
;
Diabetes Mellitus, Experimental
;
metabolism
;
pathology
;
Gastroparesis
;
metabolism
;
pathology
;
Lysophospholipids
;
pharmacology
;
Mice
;
Receptors, Cannabinoid
;
metabolism
8.Kruppel-like factor 4 mediates lysophosphatidic acid-stimulated migration and proliferation of PC3M prostate cancer cells.
Sang Hun SHIN ; Yang Woo KWON ; Soon Chul HEO ; Geun Ok JEONG ; Ba Reun KIM ; Eun Jin SEO ; Jae Ho KIM
Experimental & Molecular Medicine 2014;46(7):e104-
Prostate cancer is the most frequently diagnosed malignancy and the second leading cause of cancer mortality among men in the United States. Accumulating evidence suggests that lysophosphatidic acid (LPA) serves as an autocrine/paracrine mediator to affect initiation, progression and metastasis of prostate cancer. In the current study, we demonstrate that LPA stimulates migration and proliferation of highly metastatic human prostate cancer, PC-3M-luc-C6 cells. LPA-induced migration of PC-3M-luc-C6 cells was abrogated by pretreatment of PC-3M-luc-C6 cells with the LPA receptor 1/3 inhibitor Ki16425 or small interfering RNA (siRNA)-mediated silencing of endogenous LPA receptor 1, implicating a key role of the LPA-LPA receptor 1 signaling axis in migration of PC-3M-luc-C6 cells. In addition, LPA treatment resulted in augmented expression levels of Kruppel-like factor 4 (KLF4), and siRNA or short-hairpin RNA (shRNA)-mediated silencing of KLF4 expression resulted in the abolishment of LPA-stimulated migration and proliferation of PC-3M-luc-C6 cells. shRNA-mediated silencing of KLF4 expression resulted in the inhibition of in vivo growth of PC-3M-luc-C6 cells in a xenograft transplantation animal model. Taken together, these results suggest a key role of LPA-induced KLF4 expression in cell migration and proliferation of prostate cancer cells in vitro and in vivo.
Animals
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Gene Silencing
;
Humans
;
Kruppel-Like Transcription Factors/genetics/*metabolism
;
Lysophospholipids/*metabolism
;
Male
;
Mice, Inbred BALB C
;
Prostate/metabolism/*pathology
;
Prostatic Neoplasms/genetics/*metabolism/*pathology
9.Sphingosine Kinase-1/sphingosine 1-phosphate pathway in diabetic nephropathy.
Yanhui DENG ; Tian LAN ; Juan HUANG ; Heqing HUANG
Chinese Medical Journal 2014;127(16):3004-3010
OBJECTIVEDiabetic nephropathy (DN) is the major cause of end-stage renal disease worldwide and its prevalence continues to increase. Currently, therapies for DN provide only partial renoprotection; hence new targets for therapeutic intervention need to be identified. In this review, we summarized the new target, sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) pathway, explored its potential therapeutic role in the prevention and treatment of DN.
DATA SOURCESMost relevant articles were mainly identified by searching PubMed in English.
STUDY SELECTIONMainly original articles and critical review articles by major pioneer investigators in this field were selected to be reviewed.
RESULTSSphK1/S1P pathway can be activated by hyperglycemia, advanced glycation end products, and many pro-inflammatory cytokines, which leads to fibronectin, transforming growth factor-β1 up-regulation and AP-1 activation. And then it could promote glomerular mesangial cells proliferation and extracellular matrix accumulation, mediating the initiation and progression of diabetic renal fibrosis.
CONCLUSIONSSphK1/S1P pathway is closely correlated with the pathogenesis of DN. The results suggest that SphK1/S1P pathway as a new target for clinically improving DN in future is of great prospect.
Diabetic Nephropathies ; enzymology ; metabolism ; Extracellular Matrix ; metabolism ; Humans ; Lysophospholipids ; metabolism ; Phosphotransferases (Alcohol Group Acceptor) ; metabolism ; Signal Transduction ; Sphingosine ; analogs & derivatives ; metabolism
10.Lysophosphatidic acid increases SLC26A3 expression in inflamed intestine and reduces diarrheal severity in C57BL/6 mice with dextran-sodium-sulfate-induced colitis.
Lihong XU ; Fang XIAO ; Jiayi HE ; Xiaoqin LAN ; Qiang DING ; Junhua LI ; Ursula SEIDLER ; Yong ZHENG ; Dean TIAN
Chinese Medical Journal 2014;127(9):1737-1743
BACKGROUNDDiarrhea is a common clinical feature of ulcerative colitis resulting from unbalanced intestinal fluid and salt absorption and secretion. The Cl(-)/HCO3(-) exchanger SLC26A3 is strongly expressed in the mid-distal colon and plays an essential role in colonic Cl(-) absorption and HCO3(-) secretion. Slc26a3 expression is up-regulated by lysophosphatidic acid (LPA) in vitro. Our study was designed to investigate the effects of LPA on SLC26A3 expression and the diarrheal phenotype in a mouse colitis model.
METHODSColitis was induced in C57BL/6 mice by adding 4% of dextran sodium sulfate (DSS) to the drinking water. The mice were assigned to LPA treatment DSS group, phosphate-buffered saline (PBS) treatment DSS group, DSS only group and untreated mice with a completely randomized design. Diarrhea severity was evaluated by measuring mice weight, disease activity index (DAI), stool water content and macroscopic evaluation of colonic damage. The effect of LPA treatment on Slc26a3 mRNA level and protein expression in the different groups of mice was investigated by quantitative PCR and Western blotting.
RESULTSAll mice treated with DSS lost weight, but the onset and severity of weight loss was attenuated in the LPA treatment DSS group. The increases in stool water content and the macroscopic inflammation score in LPA treatment DSS group were significantly lower compared to DSS control group or PBS treatment DSS group ((18.89±8.67)% vs. (28.97±6.95)% or (29.48±6.71)%, P = 0.049, P = 0.041, respectively and 2.67±0.81 vs. 4.5±0.83 or 4.5±0.54, P = 0.020, P = 0.006, respectively), as well as the increase in DAI (P = 0.004, P = 0.008, respectively). LPA enema resulted in higher Slc26a3 mRNA and protein expression levels compared to PBS-treated and untreated DSS colitis mice.
CONCLUSIONLPA increases Slc26a3 expression in the inflamed intestine and reduces diarrhea severity in DSS-induced colitis, suggesting LPA might be a therapeutic strategy in the treatment of colitis associated diarrhea.
Animals ; Antiporters ; genetics ; metabolism ; Colitis ; chemically induced ; drug therapy ; Colon ; immunology ; metabolism ; Dextran Sulfate ; pharmacology ; Dextrans ; pharmacology ; Diarrhea ; drug therapy ; metabolism ; Female ; Immunoblotting ; Intestines ; drug effects ; metabolism ; Lysophospholipids ; therapeutic use ; Mice ; Mice, Inbred C57BL

Result Analysis
Print
Save
E-mail