1.Subchronic Oral Cadmium Exposure Exerts both Stimulatory and Suppressive Effects on Pulmonary Inflammation/Immune Reactivity in Rats.
Jelena KULAS ; Marina NINKOV ; Dina TUCOVIC ; Aleksandra POPOV ALEKSANDROV ; Mirela UKROPINA ; Maja CAKIC MILOSEVIC ; Jelena MUTIC ; Milena KATARANOVSKI ; Ivana MIKROV
Biomedical and Environmental Sciences 2019;32(7):508-519
OBJECTIVE:
The aim of this study is to investigate the effects of oral cadmium (Cd) ingestion on the pulmonary immune response.
METHODS:
Determination of Cd content in lungs and histopathological evaluation of the tissue was performed in rats following 30-day oral Cd administration (5 and 50 mg/L). Antioxidant enzyme defense (superoxide dismutase and catalase), cell infiltration, and production of tumor necrosis factor (TNF) and interferon (IFN)-γ, as well as the activity of myeloperoxidase (MPO), nitric oxide (NO), and various cytokines [interleukin (IL)-1β, IL-6, IL-10, and IL-17] were investigated.
RESULTS:
Cd caused tissue damage and cell infiltration in the lungs, and this damage was more pronounced at higher doses. Cd deposition resulted in lung inflammation characterized by a dose-dependent IL-1β increase in lung homogenates, increased TNF levels at both doses, and IL-6 stimulation at low doses with inhibition observed at higher doses. Cd exerted differential effects on lung leukocytes isolated by enzyme digestion, and these effects were characterized by a lack of change in the production of reactive oxygen and nitrogen species, an inhibition of IL-1β and TNF, and stimulation of MPO and IFN-γ. The higher capacity of Cd-exposed lung cells to respond to the opportunistic pathogen Staphylococcus epidermidis was demonstrated in vitro.
CONCLUSION
The potential of ingested Cd to exert both proinflammatory and immunosuppressive effects on pulmonary tissue inflammation and immune reactivity highlights the complex immunomodulatory actions of this metal.
Administration, Oral
;
Animals
;
Cadmium
;
administration & dosage
;
toxicity
;
Leukocytes
;
metabolism
;
Lung
;
drug effects
;
immunology
;
pathology
;
Male
;
Rats
;
Staphylococcus epidermidis
;
Toxicity Tests, Subchronic
2.Effect of montelukast sodium intervention on airway remodeling and percentage of Th17 cells/CD4+CD25+ regulatory T cells in asthmatic mice.
Li LI ; Chun-Yan LOU ; Min LI ; Jian-Bo ZHANG ; Jie CHEN
Chinese Journal of Contemporary Pediatrics 2016;18(11):1174-1180
OBJECTIVETo study the dynamic changes in the percentage of Th17 cells/CD4CD25regulatory T cells after intervention with montelukast sodium, a leukotriene receptor antagonist, in asthmatic mice and the association between them.
METHODSBalb/c mice were randomly divided into blank group, asthma group, and montelukast sodium group. The asthmatic mouse model of airway remodeling was established by sensitization with intraperitoneal injection of chicken ovalbumin (OVA) and aluminum hydroxide suspension and aerosol inhalation of OVA. The mice in the blank group were given normal saline, and those in the montelukast sodium group were given montelukast sodium by gavage before aerosol inhalation. Eight mice were randomly sacrificed within 24 hours after 2, 4, and 8 weeks of aerosol inhalation. The pathological sections of lung tissue were used to observe the degree of airway remodeling. Flow cytometry was used to measure the percentages of Th17 cells and CD4CD25regulatory T cells in CD4T cells.
RESULTSThe asthma group and the montelukast sodium group had significantly higher bronchial wall thickness and smooth muscle thickness at all time points compared with the blank group (P<0.05). At 8 weeks of intervention, the montelukast sodium group had significantly greater improvements in the above changes compared with the asthma group (P<0.05). Compared with the blank group, the asthma group and the montelukast sodium group had significant increases in Th17 cells (positively correlated with airway remodeling) and significant reductions in CD4CD25regulatory T cells (negatively correlated to airway remodeling) at all time points (P<0.05). At 8 weeks of intervention, the montelukast sodium group had a significant reduction in the number of Th17 cells and a significant increase in the number of CD4CD25regulatory T cells compared with the asthma group (P<0.05).
CONCLUSIONSMontelukast sodium intervention can alleviate airway remodeling and achieve better improvements over the time of intervention. The possible mechanism may be related to the improvement of immunologic derangement of CD4CD25regulatory T cells and inhibition of airway inflammation.
Acetates ; pharmacology ; Airway Remodeling ; drug effects ; Animals ; Asthma ; drug therapy ; immunology ; Female ; Lung ; pathology ; Mice ; Mice, Inbred BALB C ; Quinolines ; pharmacology ; T-Lymphocytes, Regulatory ; immunology ; Th17 Cells ; immunology
3.Dexmedetomidine alleviates pulmonary edema by upregulating AQP1 and AQP5 expression in rats with acute lung injury induced by lipopolysaccharide.
Yuan-xu JIANG ; Zhong-liang DAI ; Xue-ping ZHANG ; Wei ZHAO ; Qiang HUANG ; Li-kun GAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):684-688
This study aims to elucidate the mechanisms by which dexmedetomidine alleviates pulmonary edema in rats with acute lung injury induced by lipopolysaccharide (LPS). Male Wistar rats were randomly divided into five groups: normal saline control (NS) group, receiving intravenous 0.9% normal saline (5 mL/kg); LPS group, receiving intravenous LPS (10 mg/kg); small-dose dexmedetomidine (S) group, treated with a small dose of dexmedetomidine (0.5 μg · kg(-1) · h(-1)); medium-dose dexmedetomidine (M) group, treated with a medium dose of dexmedetomidine (2.5 μg · kg(-1) · h(-1)); high-dose dexmedetomidine (H) group, treated with a high dose of dexmedetomidine (5 μg · kg(-1) · h(-1)). The rats were sacrificed 6 h after intravenous injection of LPS or NS, and the lungs were removed for evaluating histological characteristics and determining the lung wet/dry weight ratio (W/D). The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) in the lung tissues were assessed by enzyme- linked immunosorbent assay (ELISA). The mRNA and protein expression levels of aquaporin-1 (AQP1) and aquaporin-5 (AQP5) were detected by RT-PCR, immunohistochemistry, and Western blotting. The lung tissues from the LPS groups were significantly damaged, which were less pronounced in the H group but not in the small-dose dexmedetomidine group or medium-dose dexmedetomidine group. The W/D and the concentrations of TNF-α and IL-1β in the pulmonary tissues were increased in the LPS group as compared with those in NS group, which were reduced in the H group but not in S group or M group (P<0.01). The expression of AQP1 and AQP5 was lower in the LPS group than in the NS group, and significantly increased in the H group but not in the S group or M group (P<0.01). Our findings suggest that dexmedetomidine may alleviate pulmonary edema by increasing the expression of AQP-1 and AQP-5.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
genetics
;
pathology
;
Adrenergic alpha-2 Receptor Agonists
;
pharmacology
;
Animals
;
Aquaporin 1
;
agonists
;
genetics
;
immunology
;
Aquaporin 5
;
agonists
;
genetics
;
immunology
;
Dexmedetomidine
;
pharmacology
;
Dose-Response Relationship, Drug
;
Drug Administration Schedule
;
Gene Expression Regulation
;
Injections, Intravenous
;
Interleukin-1beta
;
antagonists & inhibitors
;
genetics
;
immunology
;
Lipopolysaccharides
;
Lung
;
drug effects
;
immunology
;
pathology
;
Male
;
Organ Size
;
drug effects
;
Pulmonary Edema
;
chemically induced
;
drug therapy
;
genetics
;
pathology
;
Rats
;
Rats, Wistar
;
Signal Transduction
;
Transcription, Genetic
;
Tumor Necrosis Factor-alpha
;
antagonists & inhibitors
;
genetics
;
immunology
4.Ginkgo biloba extracts attenuate lipopolysaccharide-induced inflammatory responses in acute lung injury by inhibiting the COX-2 and NF-κB pathways.
Xin YAO ; Nan CHEN ; Chun-Hua MA ; Jing TAO ; Jian-An BAO ; Zong-Qi CHENG ; Zu-Tao CHEN ; Li-Yan MIAO
Chinese Journal of Natural Medicines (English Ed.) 2015;13(1):52-58
In the present study, we analyzed the role of Ginkgo biloba extract in lipopolysaccharide(LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS. G. biloba extract (12 and 24 mg·kg(-1)) and dexamethasone (2 mg·kg(-1)), as a positive control, were given by i.p. injection. The cells in the bronchoalveolar lavage fluid (BALF) were counted. The degree of animal lung edema was evaluated by measuring the wet/dry weight ratio. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, tumor necrosis factor-a, interleukin-1b, and interleukin-6, were assayed by enzyme-linked immunosorbent assay. Pathological changes of lung tissues were observed by H&E staining. The levels of NF-κB p65 and COX-2 expression were detected by Western blotting. Compared to the LPS group, the treatment with the G. biloba extract at 12 and 24 mg·kg(-1) markedly attenuated the inflammatory cell numbers in the BALF, decreased NF-κB p65 and COX-2 expression, and improved SOD activity, and inhibited MPO activity. The histological changes of the lungs were also significantly improved. The results indicated that G. biloba extract has a protective effect on LPS-induced acute lung injury in mice. The protective mechanism of G. biloba extract may be partly attributed to the inhibition of NF-κB p65 and COX-2 activation.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
metabolism
;
Animals
;
Bronchoalveolar Lavage Fluid
;
cytology
;
Cell Count
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Enzyme-Linked Immunosorbent Assay
;
Gene Expression
;
drug effects
;
Ginkgo biloba
;
chemistry
;
Interleukin-1beta
;
analysis
;
Interleukin-6
;
analysis
;
Lipopolysaccharides
;
Lung
;
immunology
;
pathology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Peroxidase
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
Pulmonary Edema
;
Superoxide Dismutase
;
metabolism
;
Transcription Factor RelA
;
genetics
;
metabolism
;
Tumor Necrosis Factor-alpha
;
analysis
5.Paeoniflorin inhibits macrophage-mediated lung cancer metastasis.
Qi WU ; Gang-Ling CHEN ; Ya-Juan LI ; Yang CHEN ; Fang-Zhen LIN
Chinese Journal of Natural Medicines (English Ed.) 2015;13(12):925-932
Alternatively activated macrophages are more frequently involved in tumor growth, angiogenesis, and immunosuppression. A previous study showed that paeoniflorin, the major active constituent of Paeonia lactiflora Pallas, can inhibit tumor growth and lung metastases of Lewis lung tumor-bearing mice. This study tried to investigate whether paeoniflorin inhibited lung cancer metastasis by inhibiting the alternative activation of macrophages (M2 macrophage). Using a viability assay, the cytotoxicity of paeoniflorin on Lewis lung cancer cells and peritoneal macrophages were investigated. In vitro scratch wound and in vivo lung metastasis experiments were used to test the ability to inhibit the migration of paeoniflorin and the function of M2 macrophages. Flow cytometry was performed to test the cell cycle of Lewis lung cancer cells, and to test the M2 macrophages in peritoneal macrophages and subcutaneous transplantable tumor. It was found that paeoniflorin showed no inhibitory effect on the growth of Lewis lung cancer cells and peritoneal macrophages of mouse in vitro. Paeoniflorin could attenuate the migration of LLC stimulated by alternatively activated macrophages (stimulated for 24 h and 48 h, paeoniflorin 1, 3, 10, 30, 100 μmol·L(-1), P < 0.01 or P < 0.05 vs control group). Paeoniflorin could decrease the cell populations at S phases (paeoniflorin 10, 30, 100 μmol·L(-1), P < 0.05 vs control group) and increase the cell populations at G0-G1 phases of Lewis lung cancer cells (paeoniflorin 100 μmol·L(-1), P < 0.05 vs control group) and reduce the numbers of M2 macrophages in peritoneal macrophages induced by IL-4 (paeoniflorin 1, 3, 10, 30, 100 μmol·L(-1), P < 0.01 vs Control group). Paeoniflorin could reduce lung metastasis of Lewis lung cancer cells xenograft and decrease the numbers of M2 macrophages in subcutaneous xenograft tumour in vivo (paeoniflorin 20, 40 mg·kg(-1), P < 0.01 vs control group). These results suggest that paeoniflorin could reduce lung metastasis of Lewis lung cancer cells xenograft partly through inhibiting the alternative activation of macrophages.
Animals
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
drug effects
;
Female
;
Glucosides
;
administration & dosage
;
Humans
;
Interleukin-4
;
immunology
;
Lung Neoplasms
;
drug therapy
;
immunology
;
pathology
;
physiopathology
;
Macrophages
;
cytology
;
drug effects
;
immunology
;
Mice
;
Mice, Inbred C57BL
;
Monoterpenes
;
administration & dosage
;
Neoplasm Metastasis
;
Paeonia
;
chemistry
6.IL-4 and IL-5 Secretions Predominate in the Airways of Wistar Rats Exposed to Toluene Diisocyanate Vapor.
Kouame KOUADIO ; Kui Cheng ZHENG ; Abdoulaye Abba TOURE ; Mireille DOSSO ; Hidemi TODORIKI
Journal of Preventive Medicine and Public Health 2014;47(1):57-63
OBJECTIVES: We established a Wistar rat model of asthma caused by toluene diisocyanate (TDI) exposure, and investigated the relationship between TDI exposure concentrations and respiratory hypersensitivity, airway inflammation, and cytokine secretions in animals, to better understand the mechanism of TDI induced occupational asthma. METHODS: Wistar rats were exposed to two different concentrations of TDI vapor four hours a day for five consecutive days. Bronchoalveolar lavage (BAL) was performed, and differential leucocytes from the BAL fluid were analyzed. Lung histopathological examination was carried out to investigate the inflammatory status in the airways. Production of cytokines interleukin (IL)-4 and IL-5 productions in the BAL fluid in vivo was determined with enzyme-linked immunosorbent assay kits. RESULTS: The TDI-exposed rats exhibited greater airway hypersensitivity symptoms than the control rats. The BAL differential cell count and lung histopathological examination demonstrated that inflammation reactions were present in both the central and peripheral airways, characterized with marked infiltration of eosinophils in the TDI-exposed rats. The cytokine assay showed that IL-4 and IL-5 were predominantly produced in the BAL fluid in vivo. CONCLUSIONS: These findings imply that TDI exposure concentrations may greatly affect the occurrence and extent of inflammatory events and that Th2 type cytokines may play an important role in the immunopathogenesis of TDI-induced occupational respiratory hypersensitivity.
Animals
;
Bronchoalveolar Lavage Fluid/chemistry/cytology
;
Enzyme-Linked Immunosorbent Assay
;
Eosinophils/cytology/immunology
;
Female
;
Gases/chemistry
;
Hypersensitivity/pathology
;
Interleukin-4/*analysis
;
Interleukin-5/*analysis
;
Lung/*drug effects/pathology/secretion
;
Rats
;
Rats, Wistar
;
Toluene 2,4-Diisocyanate/*toxicity
7.Effects of suplatast tosilate on airway inflammation and interleukin-5 in asthmatic rats.
Dan LIU ; Yun LI ; Li-Li ZHONG ; Yu-Pin TAN
Chinese Journal of Contemporary Pediatrics 2014;16(7):759-763
OBJECTIVETo study the effects of suplatast tosilate (IPD) on the airway inflammation and expression of interleukin-5 in asthmatic rats.
METHODSFifty adult male Sprague-Dawley rats (4-week- old) were randomly assigned to five groups: placebo control, untreated asthma, budesonide(BUD)-treated asthma , early or late IPD intervention group (n=10 rats each). Asthmatic mode was prepared by ovalbumin sensitizion and challenge. Inflammatory cells and the percentage of EOS were detected in bronchoalveolar lavage fluid (BALF). The lung tissues were removed to detect the lung histomorphology. Gene expression of IL-5 was measured by reverse transcription-polymerase chain reaction (RT-PCR). Levels of interleukin 5 (IL-5) in BALF were measured using ELISA.
RESULTSThe inflammatory cells and the percentage of EOS in BALF, IL-5 levels in BALF and IL-5 mRNA expression in the lung tissues were obviously higher in the untreated asthma group than the control group (P<0.05), while the parameters in the IPD or BUD-treated asthma groups were significantly lower than the untreated asthma group (P<0.05).
CONCLUSIONSIPD treatment can alleviate airway inflammation in asthmatic rats, possibly through inhibiting IL-5 mRNA transcripts.
Animals ; Arylsulfonates ; therapeutic use ; Asthma ; drug therapy ; immunology ; pathology ; Eosinophils ; drug effects ; Interleukin-5 ; analysis ; antagonists & inhibitors ; genetics ; Lung ; metabolism ; pathology ; Male ; Rats ; Rats, Sprague-Dawley ; Sulfonium Compounds ; therapeutic use
8.Antiviral effect of dietary germanium biotite supplementation in pigs experimentally infected with porcine reproductive and respiratory syndrome virus.
Bock Gie JUNG ; Jin A LEE ; Bong Joo LEE
Journal of Veterinary Science 2013;14(2):135-141
Germanium biotite (GB) is an aluminosilicate mineral containing 36 ppm germanium. The present study was conducted to better understand the effects of GB on immune responses in a mouse model, and to demonstrate the clearance effects of this mineral against Porcine reproductive and respiratory syndrome virus (PRRSV) in experimentally infected pigs as an initial step towards the development of a feed supplement that would promote immune activity and help prevent diseases. In the mouse model, dietary supplementation with GB enhanced concanavalin A (ConA)-induced lymphocyte proliferation and increased the percentage of CD3+CD8+ T lymphocytes. In pigs experimentally infected with PRRSV, viral titers in lungs and lymphoid tissues from the GB-fed group were significantly decreased compared to those of the control group 12 days post-infection. Corresponding histopathological analyses demonstrated that GB-fed pigs displayed less severe pathological changes associated with PRRSV infection compared to the control group, indicating that GB promotes PRRSV clearance. These antiviral effects in pigs may be related to the ability of GB to increase CD3+CD8+ T lymphocyte production observed in the mice. Hence, this mineral may be an effective feed supplement for increasing immune activity and preventing disease.
Aluminum Silicates/administration & dosage/*therapeutic use
;
Animal Feed/analysis
;
Animals
;
Antigens, CD3/metabolism
;
Antigens, CD8/metabolism
;
Antiviral Agents/administration & dosage/*therapeutic use
;
Concanavalin A/metabolism
;
Dietary Supplements/analysis
;
Disease Models, Animal
;
Ferrous Compounds/administration & dosage/*therapeutic use
;
Germanium/administration & dosage/*therapeutic use
;
Lung/immunology/virology
;
Lymphocyte Activation/drug effects
;
Lymphocytes/cytology/drug effects
;
Lymphoid Tissue/immunology/virology
;
Mice
;
Mitogens/metabolism
;
Porcine Reproductive and Respiratory Syndrome/*drug therapy/pathology/virology
;
Porcine respiratory and reproductive syndrome virus/*drug effects
;
Swine
9.Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback.
Hyung Geun MOON ; Chil Sung KANG ; Jun Pyo CHOI ; Dong Sic CHOI ; Hyun Il CHOI ; Yong Wook CHOI ; Seong Gyu JEON ; Joo Yeon YOO ; Myoung Ho JANG ; Yong Song GHO ; Yoon Keun KIM
Experimental & Molecular Medicine 2013;45(1):e5-
T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback.
Animals
;
Aspirin/pharmacology/*therapeutic use
;
Cell Polarity/drug effects/immunology
;
Feedback, Physiological/*drug effects
;
Interferon-gamma/deficiency/metabolism
;
Interleukin-17/*metabolism/pharmacology
;
Interleukin-6/biosynthesis/*metabolism
;
Lipopolysaccharides/pharmacology
;
Lung/drug effects/metabolism/pathology
;
Mice
;
Mice, Inbred C57BL
;
Pneumonia/*drug therapy/*immunology/pathology
;
Th17 Cells/drug effects/*immunology/pathology
;
Transforming Growth Factor beta1/pharmacology
10.The effect of Qi'ao Decoction on ovalbumin induced and lipopolysaccharide enhanced severe asthma mice and its mechanism.
Chen-Xue JIANG ; Xin-Sheng FAN ; Peng-Cheng GU ; Hui-Qin XU
Chinese Journal of Natural Medicines (English Ed.) 2013;11(6):638-644
AIM:
To evaluate the effect of Qi'ao Deocoction (QAD) on the inflammation and hyperresponsiveness of asthma mice.
METHODS:
120 Balb/C mice were randomly divided into six groups: normal group, model group, dexamethasone group, high dose QAD group, medium dose QAD group and low dose QAD group. The asthma model was reproduced in Balb/C mice sensitized by ovalbumin, challenged by OVA and LPS. The mice of the normal group were sensitized, challenged and intranasally instilled by PBS. On day 28-34, 6.7, 13.4 and 26.8 g · kg(-1) Qi'ao Decoction were administrated; 0.002 4 g · kg(-1) dexamethasone solution was given to the dexamethasone group; normal and model groups were given the same amount of normal saline. Bronchoalveolar lavage fluid, airway hyperresponsiveness, lung histopathology and cytokines were then collected and analyzed.
RESULTS:
Compared with normal group, total cellular score, the number of macrophages, lymphocytes, eosinophils and neutrophils of model group significantly increased (P < 0.01). Compared with model group, the administration of dexamethasone induced a significant decrease in eosinophils and neutrophils (P < 0.05, P < 0.01). The number of eosinophils, which plays an important role in airway inflammatory reaction of asthma, of the three QAD groups all decreased (P < 0.01). RL before and after Ach (5 mg · mL(-1)) stimulation in the model group both overtook that in the normal group (P < 0.01). Compared with model group, dexamethasone group, high dose QAD group, medium dose QAD group and low dose QAD group groups all had significantly lower RL before and after Ach stimulation (P < 0.01). Normal pulmonary histopathology was found in the normal group. In the model group, mice exhibited marked increases in inflammatory cell infiltration, mostly including neutrophils and macrophages, perivascular inflammation and thickened alveolus wall (P < 0.01). Dexamethasone application mitigated inflammation around the bronchi (P < 0.05). These histopathological changes were ameliorated in the three decoction groups (P < 0.01, P < 0.05). In addition, alveolus and airway wall lesions of medium dose QAD group and high dose QAD group were reduced, the number of inflammatory cells infiltrated around the walls decreased, no clear degeneration of bronchial epithelial cells was found, and exudates in bronchi declined in different degrees. Compared with normal group, IFN-γ and IL-12 of model group significantly decreased, while IL-4 increased, showing statistic difference (P < 0.05). Compared with model group, IFN-γ and IL-12 level of dexamethasone group went up too, but IL-4 declined (P < 0.05). The level of IFN-γ of medium dose QAD group and high dose QAD group both increased; IL-4 and IL-12 of medium dose group were found significant differences (P < 0.05); but none of the cytokines of low dose QAD group showed statistical significance (P > 0.05).
CONCLUSION
QAD can significantly inhibit airway inflammation and airway hyperresponsiveness of mice with severe asthma induced by ovalumin and lipopolysaccharide, adjust the balance of cytokines, and improve lung histopathological condition. So, it exhibits great effect on severe asthma.
Animals
;
Asthma
;
chemically induced
;
drug therapy
;
immunology
;
pathology
;
Drugs, Chinese Herbal
;
administration & dosage
;
Female
;
Humans
;
Interleukin-12
;
immunology
;
Interleukin-4
;
immunology
;
Lipopolysaccharides
;
adverse effects
;
immunology
;
Lung
;
immunology
;
pathology
;
Mice
;
Mice, Inbred BALB C
;
Ovalbumin
;
adverse effects
;
immunology

Result Analysis
Print
Save
E-mail