1.Preparation of purified proteins from fresh Pheretima and their inhibitory effect against pulmonary fibrosis in mice.
Shu Yu LI ; Qi Xin YANG ; An Na ZUO ; Lin Hua TIAN ; Jin Hai HUO ; Yan Li MENG ; Qing Fa TANG ; Wei Ming WANG
Journal of Southern Medical University 2022;42(4):618-624
OBJECTIVE:
To develop a convenient method for rapid purification of fresh Pheretima proteins and assess the inhibitory effect of these proteins against pulmonary fibrosis.
METHODS:
The crude extract of fresh Pheretima was obtained by freeze-drying method and then purified by size exclusion chromatography. The composition of the purified proteins was analyzed by mass spectrometry. MRC-5 cells were treated with 5 ng/mL TGF-β1 alone (model group) or in combination with SB431542 (2 μmol/L) or the purified proteins (13.125 μg/mL), and the cytotoxicity of purified proteins and their inhibitory effects on cell proliferation were detected with CCK8 assay. Flow cytometry was used to detect the changes in cell apoptosis, and the cellular expressions of α-SMA, Vimentin, E-cadherin, collagen I, Smad2/3 and P-Smad2/3 were detected using RT-PCR and Western blotting. In the animal experiment, adult male C57BL/6 mice were subjected to intratracheal instillation of bleomycin followed by treatment with the purified proteins (5 mg/mL) for 21 days, after which HE and Masson staining was used to observe the pathological changes in the lung tissue of the mice.
RESULTS:
We successfully obtained purified proteins from fresh Pheretima protein by size exclusion chromatography. Treatment with the purified proteins significantly inhibited TGF-β1-induced proliferation of MRC-5 cells (P < 0.01), reduced the cellular expressions of α-SMA, Vimentin and collagen I (P < 0.001 or P < 0.01), increased the expression of E-cadherin (P < 0.01), and inhibited the expressions of Smad2/3 and P-Smad2/3 (P < 0.001 or P < 0.01). In male C57BL/6 mice models of bleomycin-induced pulmonary fibrosis, treatment with the purified proteins obviously reduced the number of inflammatory cells and fibrotic area in the lungs.
CONCLUSION
The purified proteins from fresh Pheretima obtained by size exclusion chromatography can inhibit pulmonary fibrosis in mice by regulating the TGF-β/ Smad pathway.
Animals
;
Biological Products/pharmacology*
;
Bleomycin/adverse effects*
;
Cadherins/metabolism*
;
Collagen Type I
;
Lung/pathology*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Oligochaeta/chemistry*
;
Pulmonary Fibrosis/drug therapy*
;
Transforming Growth Factor beta1/metabolism*
;
Vimentin/metabolism*
2.Cardamine komarovii flower extract reduces lipopolysaccharide-induced acute lung injury by inhibiting MyD88/TRIF signaling pathways.
Qi CHEN ; Ke-Xin ZHANG ; Tai-Yuan LI ; Xuan-Mei PIAO ; Mei-Lan LIAN ; Ren-Bo AN ; Jun JIANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):461-468
In the present study, we investigated anti-inflammatory effect of Cardamine komarovii flower (CKF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We determined the effect of CKF methanolic extracts on LPS-induced pro-inflammatory mediators NO and prostaglandin E2 (PGE2), production of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6), and related protein expression levels of MyD88/TRIF signaling pathways in peritoneal macrophages (PMs). Nuclear translocation of NF-κB-p65 was analyzed by immunofluorescence. For the in vivo experiments, an ALI model was established to detect the number of inflammatory cells and inflammatory factors (IL-1β, TNF-α, and IL-6) in bronchoalveolar lavage fluid (BALF) of mice. The pathological damage in lung tissues was evaluated through H&E staining. Our results showed that CKF can decrease the production of inflammatory mediators, such as NO and PGE2, by inhibiting their synthesis-related enzymes iNOS and COX-2 in LPS-induced PMs. In addition, CKF can downregulate the mRNA levels of IL-1β, TNF-α, and IL-6 to inhibit the production of inflammatory factors. Mechanism studies indicated that CKF possesses a fine anti-inflammatory effect by regulating MyD88/TRIF dependent signaling pathways. Immunocytochemistry staining showed that the CKF extract attenuates the LPS-induced translocation of NF-kB p65 subunit in the nucleus from the cytoplasm. In vivo experiments revealed that the number of inflammatory cells and IL-1β in BALF of mice decrease after CKF treatment. Histopathological observation of lung tissues showed that CKF can remarkably improve alveolar clearance and infiltration of interstitial and alveolar cells after LPS stimulation. In conclusion, our results suggest that CKF inhibits LPS-induced inflammatory response by inhibiting the MyD88/TRIF signaling pathways, thereby protecting mice from LPS-induced ALI.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
genetics
;
metabolism
;
Adaptor Proteins, Vesicular Transport
;
genetics
;
metabolism
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
Cardamine
;
chemistry
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Female
;
Flowers
;
chemistry
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Male
;
Mice
;
Myeloid Differentiation Factor 88
;
genetics
;
metabolism
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Plant Extracts
;
administration & dosage
;
chemistry
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
3.Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells.
Wei WANG ; Qing-Bin LIU ; Wei JING
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):252-263
Astragalus membranaceus may be a potential therapy for childhood asthma but its driving mechanism remains elusive. The main components of A. membranaceus were identified by HPLC. The children with asthma remission were divided into two combination group (control group, the combination of budesonide and terbutaline) and A. membranaceus group (treatment group, the combination of budesonide, terbutaline and A. membranaceus). The therapeutic results were compared between two groups after 3-month therapy. Porcine peripheral blood mononuclear cells (PBMCs) were isolated from venous blood by using density gradient centrifugation on percoll. The levels of FoxP3, EGF-β, IL-17 and IL-23 from PBMCs and serum IgE were measured. The relative percentage of Treg/Th17 cells was determined using flow cytometry. The main components of A. membranaceus were calycosin-7-O-glucoside, isoquercitrin, ononin, calycosin, quercetin, genistein, kaempferol, isorhamnetin and formononetin, all of which may contribute to asthma therapy. Lung function was significantly improved in the treatment group when compared with a control group (P < 0.05). The efficacy in preventing the occurrence of childhood asthma was higher in the treatment group than the control group (P < 0.05). The levels of IgE, IL-17 and IL-23 were reduced significantly in the treatment group when compared with the control group, while the levels of FoxP3 and TGF-β were increased in the treatment group when compared with the control group (P < 0.05). A. membranaceus increased the percentage of Treg cells and reduced the percentage of Th17 cells. A. membranaceus is potential natural product for improving the therapeutic efficacy of combination therapy of budesonide and terbutaline for the children with asthma remission by modulating the balance of Treg/Th17 cells.
Animals
;
Asthma
;
drug therapy
;
immunology
;
Astragalus propinquus
;
chemistry
;
Budesonide
;
administration & dosage
;
Cells, Cultured
;
Child
;
Child, Preschool
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
pharmacology
;
Female
;
Humans
;
Immunologic Factors
;
administration & dosage
;
pharmacology
;
Leukocytes, Mononuclear
;
drug effects
;
metabolism
;
Lung
;
drug effects
;
physiology
;
Male
;
Swine
;
T-Lymphocytes, Regulatory
;
cytology
;
drug effects
;
Terbutaline
;
administration & dosage
;
Th17 Cells
;
cytology
;
drug effects
;
Treatment Outcome
4.Houttuynia cordata polysaccharide alleviated intestinal injury and modulated intestinal microbiota in H1N1 virus infected mice.
Mei-Yu CHEN ; Hong LI ; Xiao-Xiao LU ; Li-Jun LING ; Hong-Bo WENG ; Wei SUN ; Dao-Feng CHEN ; Yun-Yi ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):187-197
Houttuynia cordata polysaccharide (HCP) is extracted from Houttuynia cordata, a key traditional Chinese medicine. The study was to investigate the effects of HCP on intestinal barrier and microbiota in H1N1 virus infected mice. Mice were infected with H1N1 virus and orally administrated HCP at a dosage of 40 mg(kg(d. H1N1 infection caused pulmonary and intestinal injury and gut microbiota imbalance. HCP significantly suppressed the expression of hypoxia inducible factor-1α and decreased mucosubstances in goblet cells, but restored the level of zonula occludens-1 in intestine. HCP also reversed the composition change of intestinal microbiota caused by H1N1 infection, with significantly reduced relative abundances of Vibrio and Bacillus, the pathogenic bacterial genera. Furthermore, HCP rebalanced the gut microbiota and restored the intestinal homeostasis to some degree. The inhibition of inflammation was associated with the reduced level of Toll-like receptors and interleukin-1β in intestine, as well as the increased production of interleukin-10. Oral administration of HCP alleviated lung injury and intestinal dysfunction caused by H1N1 infection. HCP may gain systemic treatment by local acting on intestine and microbiota. This study proved the high-value application of HCP.
Animals
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Gastrointestinal Microbiome
;
drug effects
;
Houttuynia
;
chemistry
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Inflammation
;
drug therapy
;
pathology
;
Influenza A Virus, H1N1 Subtype
;
pathogenicity
;
Intestinal Mucosa
;
drug effects
;
metabolism
;
microbiology
;
pathology
;
Lung
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections
;
drug therapy
;
pathology
;
physiopathology
;
Plant Extracts
;
chemistry
;
Polysaccharides
;
chemistry
;
pharmacology
;
therapeutic use
;
Toll-Like Receptors
;
metabolism
;
Zonula Occludens-1 Protein
;
metabolism
5.Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line.
Chen-Min JIANG ; Xin LIU ; Chun-Xue LI ; Hao-Cheng QIAN ; Di CHEN ; Chao-Qiang LAI ; Li-Rong SHEN
Journal of Zhejiang University. Science. B 2018;19(12):960-972
Royal jelly (RJ) from honeybee has been widely used as a health promotion supplement. The major royal jelly proteins (MRJPs) have been identified as the functional component of RJ. However, the question of whether MRJPs have anti-senescence activity for human cells remains. Human embryonic lung fibroblast (HFL-I) cells were cultured in media containing no MRJPs (A), MRJPs at 0.1 mg/ml (B), 0.2 mg/ml (C), or 0.3 mg/ml (D), or bovine serum albumin (BSA) at 0.2 mg/ml (E). The mean population doubling levels of cells in media B, C, D, and E were increased by 12.4%, 31.2%, 24.0%, and 10.4%, respectively, compared with that in medium A. The cells in medium C also exhibited the highest relative proliferation activity, the lowest senescence, and the longest telomeres. Moreover, MRJPs up-regulated the expression of superoxide dismutase-1 (SOD1) and down-regulated the expression of mammalian target of rapamycin (MTOR), catenin beta like-1 (CTNNB1), and tumor protein p53 (TP53). Raman spectra analysis showed that there were two unique bands related to DNA synthesis materials, amide carbonyl group vibrations and aromatic hydrogens. These results suggest that MRJPs possess anti-senescence activity for the HFL-I cell line, and provide new knowledge illustrating the molecular mechanism of MRJPs as anti-senescence factors.
Animals
;
Bees
;
Cattle
;
Cell Line
;
Cell Proliferation
;
Cellular Senescence/drug effects*
;
Culture Media
;
Dose-Response Relationship, Drug
;
Fatty Acids/chemistry*
;
Fibroblasts/drug effects*
;
Humans
;
Insect Proteins/chemistry*
;
Lung/drug effects*
;
Serum Albumin/metabolism*
;
Spectrum Analysis, Raman
;
Superoxide Dismutase-1/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
beta Catenin/metabolism*
6.Pulmonary Toxicity in Rats Caused by Exposure to Intratracheal Instillation of SiO2 Nanoparticles.
Hong YANG ; Qiu Yun WU ; ; Ming Yue LI ; Can Shan LAO ; Ying Jian ZHANG ;
Biomedical and Environmental Sciences 2017;30(4):264-279
OBJECTIVEThe effect of the silica nanoparticles (SNs) on lungs injury in rats was investigated to evaluate the toxicity and possible mechanisms for SNs.
METHODSMale Wistar rats were instilled intratracheally with 1 mL of saline containing 6.25, 12.5, and 25.0 mg of SNs or 25.0 mg of microscale SiO2 particles suspensions for 30 d, were then sacrificed. Histopathological and ultrastructural change in lungs, and chemical components in the urine excretions were investigated by light microscope, TEM and EDS. MDA, NO and hydroxyproline (Hyp) in lung homogenates were quantified by spectrophotometry. Contents of TNF-α, TGF-β1, IL-1β, and MMP-2 in lung tissue were determined by immunohistochemistry staining.
RESULTSThere is massive excretion of Si substance in urine. The SNs lead pulmonary lesions of rise in lung/body coefficients, lung inflammation, damaged alveoli, granuloma nodules formation, and collagen metabolized perturbation, and lung tissue damage is milder than those of microscale SiO2 particles. The SNs also cause increase lipid peroxidation and high expression of cytokines.
CONCLUSIONThe SNs result into pulmonary fibrosis by means of increase lipid peroxidation and high expression of cytokines. Milder effect of the SNs on pulmonary fibrosis comparing to microscale SiO2 particles is contributed to its elimination from urine due to their ultrafine particle size.
Air Pollutants ; toxicity ; Animals ; Dose-Response Relationship, Drug ; Lung ; drug effects ; pathology ; ultrastructure ; Male ; Microscopy, Electron, Transmission ; Nanoparticles ; toxicity ; Pulmonary Fibrosis ; chemically induced ; metabolism ; pathology ; Random Allocation ; Rats ; Rats, Wistar ; Silicon Dioxide ; toxicity ; Specific Pathogen-Free Organisms ; Spectrometry, X-Ray Emission ; Urine ; chemistry
7.Effect and its molecular mechanisms of curcumin on pulmonary artery smooth muscle cells in rat model with chronic obstructive pulmonary disease.
Xiangang LIN ; Yenong CHEN ; Zhuqing LIU
Journal of Zhejiang University. Medical sciences 2016;45(5):469-476
To investigate the effects and the underlying molecular mechanisms of curcumin on pulmonary artery smooth muscle cells in rat model with chronic obstructive pulmonary disease (COPD).A total of 75 male Wistar rats were randomly divided into control group (group CN), model group (group M), low-dose curcumin group (group CL), medium-dose curcumin group (group CM) and high-dose curcumin group (group CH). HE staining was used to observe the morphology of pulmonary artery. Proliferating cell nuclear antigen (PCNA), apoptosis-related protein Bcl-2 and Bax were detected by immunohistochemical staining. TUNEL kit was used to analyze the effects of curcumin on apoptosis of smooth muscle cells, and the protein expressions of SOCS-3/JAK2/STAT pathway in lung tissues were determined by western blot.Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVMI) in group M were significantly higher than those in group CN, group CH and group CM (all<0.05). HE staining and TUNEL kit test showed that the number of pulmonary artery smooth muscle cells had a significant increase in group M, while the pulmonary artery tube became thin, and the smooth muscle cells shrinked in group CM and group CH. Immunohistochemistry showed that PCNA and Bcl-2 in group M were significantly higher than those in group CN (all<0.05), while Bax expression was significantly lower than that in group CN (<0.05). PCNA in group CM and group CH were significantly lower than that in group M (all<0.05), while Bax expression was significantly higher than that in group M (<0.05). Western blot showed that SOCS-3 protein was significantly decreased in group M, while the p-JAK2, p-STAT1, p-STAT3 were significantly increased (all<0.05). Compared with group M, SOCS-3 protein in group CM and group CH were significantly increased (all<0.05), while the p-JAK2, p-STAT3 were significantly reduced (all<0.05).Curcumin could promote the apoptosis of smooth muscle cells in rats with COPD, and improve the mean pulmonary artery pressure and RVMI through stimulating SOCS-3/JAK2/STAT signaling pathway.
Animals
;
Apoptosis
;
drug effects
;
physiology
;
Arterial Pressure
;
drug effects
;
physiology
;
Curcumin
;
pharmacology
;
Hypertrophy, Right Ventricular
;
pathology
;
physiopathology
;
Janus Kinase 2
;
drug effects
;
physiology
;
Lung
;
chemistry
;
drug effects
;
Male
;
Myocytes, Smooth Muscle
;
drug effects
;
pathology
;
Proliferating Cell Nuclear Antigen
;
drug effects
;
metabolism
;
Proto-Oncogene Proteins c-bcl-2
;
drug effects
;
metabolism
;
Pulmonary Artery
;
drug effects
;
pathology
;
Pulmonary Disease, Chronic Obstructive
;
pathology
;
physiopathology
;
Rats
;
Rats, Wistar
;
STAT Transcription Factors
;
Suppressor of Cytokine Signaling 3 Protein
;
drug effects
;
physiology
;
Ventricular Pressure
;
drug effects
;
bcl-2-Associated X Protein
;
drug effects
;
metabolism
8.Marsdenia tenacissima extract suppresses A549 cell migration through regulation of CCR5-CCL5 axis, Rho C, and phosphorylated FAK.
Sen-Sen LIN ; Fang-Fang LI ; Li SUN ; Wei FAN ; Ming GU ; Lu-Yong ZHANG ; Song QIN ; Sheng-Tao YUAN
Chinese Journal of Natural Medicines (English Ed.) 2016;14(3):203-209
Marsdenia tenacissima, a traditional Chinese medicine, is long been used to treat various diseases including asthma, cancer, trachitis, tonsillitis, pharyngitis, cystitis, and pneumonia. Although Marsdenia tenacissima has been demonstrated to have strong anti-tumor effects against primary tumors, its effect on cancer metastasis remains to be defined, and the molecular mechanism underlying the anti-metastatic effect is unknown. In the present study, we investigated the effects of XAP (an extract of Marsdenia tenacissima) on A549 lung cancer cell migration and explored the role of CCR5-CCL5 axis in the anti-metastatic effects of XAP. Our resutls showed that XAP inhibited A549 lung cancer cell migration and invasion in a dose-dependent manner. The protein levels of CCR5, but not CCR9 and CXCR4, were decreased by XAP. The secretion of CCL5, the ligand of CCR5, was reduced by XAP. XAP down-regulated Rho C expression and FAK phosphorylation. In conclusion, XAP inhibited A549 cell migration and invasion through down-regulation of CCR5-CCL5 axis, Rho C, and FAK.
A549 Cells
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Cell Line, Tumor
;
Cell Movement
;
drug effects
;
Chemokine CCL5
;
metabolism
;
Focal Adhesion Kinase 1
;
metabolism
;
Humans
;
Lung Neoplasms
;
Marsdenia
;
chemistry
;
Phosphorylation
;
Plant Extracts
;
pharmacology
;
Receptors, CCR5
;
metabolism
;
rho GTP-Binding Proteins
;
metabolism
;
rhoC GTP-Binding Protein
9.Agglutinin isolated from Arisema heterophyllum Blume induces apoptosis and autophagy in A549 cells through inhibiting PI3K/Akt pathway and inducing ER stress.
Li-Xing FENG ; Peng SUN ; Tian MI ; Miao LIU ; Wang LIU ; Si YAO ; Yi-Min CAO ; Xiao-Lu YU ; Wan-Ying WU ; Bao-Hong JIANG ; Min YANG ; De-An GUO ; Xuan LIU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(11):856-864
Arisaema heterophyllum Blume is one of the three medicinal plants known as traditional Chinese medicine Rhizoma Arisaematis (RA). RA has been popularly used to treat patients with convulsions, inflammation, and cancer for a long time. However, the underlying mechanisms for RA effects are still unclear. The present study was designed to determine the cytotoxicity of agglutinin isolated from Arisema heterophyllum Blume (AHA) and explore the possible mechanisms in human non-small-cell lung cancer A549 cells. AHA with purity up to 95% was isolated and purified from Arisaema heterophyllum Blume using hydrophobic interaction chromatography. AHA dose-dependently inhibited the proliferation of A549 cells and induced G phase cell cycle arrest. AHA induced apoptosis by up-regulating pro-apoptotic Bax, decreasing anti-apoptotic Bcl-2, and activating caspase-9 and caspase-3. In A549 cells treated with AHA, the PI3K/Akt pathway was inhibited. Furthermore, AHA induced increase in the levels of ER stress markers such as phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), inositol-requiring enzyme 1α (IRE1α), and phosphorylated c-Jun NH-terminal kinase (p-JNK). AHA also induced autophagy in A549 cells. Staining of acidic vesicular organelles (AVOs) and increase in the levels of LC3II and ATG7 were observed in AHA-treated cells. These findings suggested that AHA might be one of the active components with anti-cancer effects in Arisaema heterophyllum Blume. In conclusion, cytotoxicity of AHA on cancer cells might be related to its effects on apoptosis and autophagy through inhibition of PI3K/Akt pathway and induction of ER stress.
A549 Cells
;
Agglutinins
;
pharmacology
;
Apoptosis
;
drug effects
;
Arisaema
;
chemistry
;
Autophagy
;
drug effects
;
Carcinoma, Non-Small-Cell Lung
;
drug therapy
;
enzymology
;
metabolism
;
physiopathology
;
Cell Line, Tumor
;
Drugs, Chinese Herbal
;
pharmacology
;
Endoplasmic Reticulum Stress
;
drug effects
;
Humans
;
MAP Kinase Signaling System
;
drug effects
;
Phosphatidylinositol 3-Kinases
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
10.Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line.
Shahnaz MAJEED ; Mohd Syafiq Bin ABDULLAH ; Gouri Kumar DASH ; Mohammed Tahir ANSARI ; Anima NANDA
Chinese Journal of Natural Medicines (English Ed.) 2016;14(8):615-620
Biosynthesis of silver and other metallic nanoparticles is one of the emerging research area in the field of science and technology due to their potentiality, especially in the field of nano-biotechnology and biomedical sciences in order to develop nanomedicine. In our present study, Penicillium decumbens (MTCC-2494) was brought from Institute of Microbial Technology (IMTECH) Chandigarh and employed for extracellular biological synthesis of silver nanoparticles. Ag-NPs formation was appeared with a dark brown color inside the conical flask. Characterization of Ag-NPs were done by UV-Spectrophotometric analysis which showed absorption peak at 430 nm determines the presence of nanoparticles, Fourier transform infrared (FT-IR) spectroscopic analysis, showed amines and amides are the possible proteins involved in the stabilization of nanoparticles as capping agent. Atomic force Microscopy (AFM) confirmed the particle are spherical, size was around 30 to 60 nm and also the roughness of nanoparticles. Field emission scanning electron microscopy (FE-SEM) showed the topology of the nanoparticles and were spherical in shape. The biosynthesis process was found fast, ecofriendly and cost effective. Nano-silver particle was found to have a broad antimicrobial activity and also it showed good enhancement of antimicrobial activity of Carbenicillin, Piperacillin, Cefixime, Amoxicillin, Ofloxacin and Sparfloxacin in a synergistic mode. These Ag-NPs showed good anti-cancer activity at 80 μg·mL(-1)upon 24 hours of incubation and toxicity increases upon 48 hours of incubation against A-549 human lung cancer cell line and the synergistic formulation of the antibiotic with the synthesized nanoparticles was found more effective against the pathogenic bacteria studied.
Anti-Bacterial Agents
;
metabolism
;
pharmacology
;
Antineoplastic Agents
;
metabolism
;
pharmacology
;
Bacteria
;
drug effects
;
Cell Line, Tumor
;
Humans
;
Lung Neoplasms
;
drug therapy
;
Metal Nanoparticles
;
chemistry
;
Microbial Sensitivity Tests
;
Penicillium
;
metabolism
;
Silver
;
metabolism
;
pharmacology

Result Analysis
Print
Save
E-mail