1.The protective effects of vitamin E on lung injury caused by high temperature and PM in COPD rats.
Jiang-Tao LIU ; Bin LUO ; Xiao-Tao HE ; Lan-Yu LI ; Sheng-Gang XU
Chinese Journal of Applied Physiology 2019;35(4):293-296
OBJECTIVE:
To investigate the effects of vitamin E on the respiratory function impairment in rats with chronic obstructive pulmonary disease (COPD) after exposed to high temperature and PM.
METHODS:
Fifty-four 7-week-old SPF male Wistar rats were randomly divided into 9 experimental groups (n=6). The rat COPD model was established by lipopolysaccharide (LPS) and smoke exposure. After modeled, the rats were tracheal instilled with PM (0 mg/ml, 3.2 mg/ml) and intraperitoneally injected with vitamin E at the dose of 40 mg/kg (20 mg/ml). Part of rats (high temperature groups) were then exposed to high temperature (40℃), once (8 h) a day for three consecutive days. After the last exposure, the lung function of rats was detected. The expression levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1) were detected by corresponding ELISA kits.
RESULTS:
Compared with the control group, exposure of high temperature and PM could inhibit the lung function of COPD rats significantly (P<0.05); the level of MCP-1 was increased significantly in PM-exposure groups (P<0.05); iNOS was increased significantly in the groups of high temperature (P<0.05). Compared with the single-PM exposure groups, TNF-α in lung was decreased in the normal temperature health group and high temperature COPD group (P<0.05) after treated with vitamin E; MCP-1 was decreased in all vitamin E-treated groups (P<0.05); the decreased iNOS only appeared in the group of high temperature with vitamin E treatment.
CONCLUSION
High temperature and PM could aggravate the inflammation of COPD rats. As an antioxidant, vitamin E may protect the lung from the damage effects.
Animals
;
Chemokine CCL2
;
metabolism
;
Hot Temperature
;
adverse effects
;
Lung
;
physiopathology
;
Male
;
Nitric Oxide Synthase Type II
;
metabolism
;
Particulate Matter
;
adverse effects
;
Pulmonary Disease, Chronic Obstructive
;
drug therapy
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Tumor Necrosis Factor-alpha
;
metabolism
;
Vitamin E
;
pharmacology
2.Houttuynia cordata polysaccharide alleviated intestinal injury and modulated intestinal microbiota in H1N1 virus infected mice.
Mei-Yu CHEN ; Hong LI ; Xiao-Xiao LU ; Li-Jun LING ; Hong-Bo WENG ; Wei SUN ; Dao-Feng CHEN ; Yun-Yi ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):187-197
Houttuynia cordata polysaccharide (HCP) is extracted from Houttuynia cordata, a key traditional Chinese medicine. The study was to investigate the effects of HCP on intestinal barrier and microbiota in H1N1 virus infected mice. Mice were infected with H1N1 virus and orally administrated HCP at a dosage of 40 mg(kg(d. H1N1 infection caused pulmonary and intestinal injury and gut microbiota imbalance. HCP significantly suppressed the expression of hypoxia inducible factor-1α and decreased mucosubstances in goblet cells, but restored the level of zonula occludens-1 in intestine. HCP also reversed the composition change of intestinal microbiota caused by H1N1 infection, with significantly reduced relative abundances of Vibrio and Bacillus, the pathogenic bacterial genera. Furthermore, HCP rebalanced the gut microbiota and restored the intestinal homeostasis to some degree. The inhibition of inflammation was associated with the reduced level of Toll-like receptors and interleukin-1β in intestine, as well as the increased production of interleukin-10. Oral administration of HCP alleviated lung injury and intestinal dysfunction caused by H1N1 infection. HCP may gain systemic treatment by local acting on intestine and microbiota. This study proved the high-value application of HCP.
Animals
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Gastrointestinal Microbiome
;
drug effects
;
Houttuynia
;
chemistry
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Inflammation
;
drug therapy
;
pathology
;
Influenza A Virus, H1N1 Subtype
;
pathogenicity
;
Intestinal Mucosa
;
drug effects
;
metabolism
;
microbiology
;
pathology
;
Lung
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections
;
drug therapy
;
pathology
;
physiopathology
;
Plant Extracts
;
chemistry
;
Polysaccharides
;
chemistry
;
pharmacology
;
therapeutic use
;
Toll-Like Receptors
;
metabolism
;
Zonula Occludens-1 Protein
;
metabolism
3.Research Progress of the Role of EMT in EGFR-TKIs Resistance of Non-small Cell Lung Cancer.
Li YU ; Sha HUANG ; Wang LV ; Zhehao HE ; Jian HU
Chinese Journal of Lung Cancer 2018;21(12):907-911
Lung cancer is the one of the malignant tumor of the highest morbidity and mortality over the world, and non-small cell lung cancer (NSCLC) makes up about 80%. Nowadays, molecular targeted therapy has been the first-line treatment for NSCLC. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are increasingly used in the clinical treatment, but the EGFR-TKIs acquired resistance becomes the bottleneck of continuation of EGFR-TKIs therapy. Epithelial-mesenchymal transition (EMT) is a biological phenomenon in which epithelial cells are transformed into mesenchymal cells. EMT promoted metastasis, invasion of lung cancer and conferred characteristic of stem cell on cancer cells. Meanwhile, EMT is one of an important cause of EGFR-TKIs resistance in NSCLC. The recent studies have found that resistant cells restored the sensitivity to EGFR-TKIs by reversing EMT which suggested that the target of EMT may contribute to inhibit or even reverse the resistance of EGFR-TKIs. Here we make a review about research progress of EMT in EGFR-TKIs resistance in NSCLC.
.
Animals
;
Antineoplastic Agents
;
administration & dosage
;
Carcinoma, Non-Small-Cell Lung
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Drug Resistance, Neoplasm
;
Epithelial-Mesenchymal Transition
;
drug effects
;
ErbB Receptors
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Humans
;
Lung Neoplasms
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Protein Kinase Inhibitors
;
administration & dosage
4.Role of PD 0332991 on the Proliferation and Apoptosis of Vascular Endothelial Cells.
Chenlong ZHAO ; Minghui LIU ; Yongwen LI ; Hongbing ZHANG ; Ying LI ; Hao GONG ; Yin YUAN ; Weiting LI ; Hongyu LIU ; Jun CHEN
Chinese Journal of Lung Cancer 2018;21(5):375-382
BACKGROUND:
Angiogenesis is an important process in the development of tumor. PD 0332991, a cell cycle inhibitor, can specifically inhibit CD4/6 phosphorylation and cell cycle progression. In xeongraft mice models, PD 0332991 treated mice had significantly decreased angiogenesis and vascular density compared with the control group, but the mechanism remains unknown. The purpose of this study is to investigate the role and molecular mechanism of PD 0332991 on vascular endothelial cells.
METHODS:
EA.hy926 cells, a kind of vascular endothelial cell, were used as the research model. The effects of PD 0332991 on the activity and proliferation of EA.hy926 cells were detected by the MTT, EdU assays. Wound-healing assays and transwell assays were used to determine the effects of PD 0332991 on the mobility of EA.hy926. The influence of PD 0332991 on cell cycle and apoptosis of endothelial cells was tested by flow cytometry, and the Western blot was applied to observe the expression of cell cycle related proteins in EA.hy926 cells treated by PD 0332991.
RESULTS:
PD 0332991 significantly inhibited the proliferation and mobility of EA.hy926 cells, caused cell cycle arrest and apoptosis. At the same time, PD 0332991 inhibited the expression of CDK4/6 and phosphorylation of Rb, and thus inhibited the cell cycle progression of EA.hy926 cells.
CONCLUSIONS
PD 0332991 can inhibit the proliferation and activity of endothelial cells and induces apoptosis.
Angiogenesis Inhibitors
;
pharmacology
;
Animals
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cell Survival
;
drug effects
;
Cyclin-Dependent Kinase 4
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase 6
;
genetics
;
metabolism
;
Endothelial Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Lung Neoplasms
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Mice
;
Piperazines
;
pharmacology
;
Pyridines
;
pharmacology
5.Effect of intranasal rosiglitazone on airway inflammation and remodeling in a murine model of chronic asthma.
Hwa Young LEE ; Chin Kook RHEE ; Ji Young KANG ; Chan Kwon PARK ; Sook Young LEE ; Soon Suk KWON ; Young Kyoon KIM ; Hyoung Kyu YOON
The Korean Journal of Internal Medicine 2016;31(1):89-97
BACKGROUND/AIMS: Asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Peroxisome proliferator-activated receptors have been reported to regulate inflammatory responses in many cells. In this study, we examined the effects of intranasal rosiglitazone on airway remodeling in a chronic asthma model. METHODS: We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated intranasally with rosiglitazone with or without an antagonist during OVA challenge. We determined airway inflammation and the degree of airway remodeling by smooth muscle actin area and collagen deposition. RESULTS: Mice chronically exposed to OVA developed sustained eosinophilic airway inflammation, compared with control mice. Additionally, the mice developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Administration of rosiglitazone intranasally inhibited the eosinophilic inflammation significantly, and, importantly, airway smooth muscle remodeling in mice chronically exposed to OVA. Expression of Toll-like receptor (TLR)-4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) was increased in the OVA group and decreased in the rosiglitazone group. Co-treatment with GW9660 (a rosiglitazone antagonist) and rosiglitazone increased the expression of TLR-4 and NF-kappaB. CONCLUSIONS: These results suggest that intranasal administration of rosiglitazone can prevent not only air way inf lammation but also air way remodeling associated with chronic allergen challenge. This beneficial effect is mediated by inhibition of TLR-4 and NF-kappaB pathways.
Actins/metabolism
;
Administration, Inhalation
;
Airway Remodeling/*drug effects
;
Animals
;
Anti-Asthmatic Agents/*administration & dosage
;
Asthma/chemically induced/*drug therapy/metabolism/physiopathology
;
Chronic Disease
;
Collagen/metabolism
;
Disease Models, Animal
;
Female
;
Lung/*drug effects/metabolism/physiopathology
;
Mice, Inbred BALB C
;
NF-kappa B/metabolism
;
Ovalbumin
;
PPAR gamma/agonists/metabolism
;
Pneumonia/chemically induced/physiopathology
;
Pulmonary Eosinophilia/chemically induced/prevention & control
;
Signal Transduction/drug effects
;
Thiazolidinediones/*administration & dosage
;
Toll-Like Receptor 4/metabolism
6.Effect and its molecular mechanisms of curcumin on pulmonary artery smooth muscle cells in rat model with chronic obstructive pulmonary disease.
Xiangang LIN ; Yenong CHEN ; Zhuqing LIU
Journal of Zhejiang University. Medical sciences 2016;45(5):469-476
To investigate the effects and the underlying molecular mechanisms of curcumin on pulmonary artery smooth muscle cells in rat model with chronic obstructive pulmonary disease (COPD).A total of 75 male Wistar rats were randomly divided into control group (group CN), model group (group M), low-dose curcumin group (group CL), medium-dose curcumin group (group CM) and high-dose curcumin group (group CH). HE staining was used to observe the morphology of pulmonary artery. Proliferating cell nuclear antigen (PCNA), apoptosis-related protein Bcl-2 and Bax were detected by immunohistochemical staining. TUNEL kit was used to analyze the effects of curcumin on apoptosis of smooth muscle cells, and the protein expressions of SOCS-3/JAK2/STAT pathway in lung tissues were determined by western blot.Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVMI) in group M were significantly higher than those in group CN, group CH and group CM (all<0.05). HE staining and TUNEL kit test showed that the number of pulmonary artery smooth muscle cells had a significant increase in group M, while the pulmonary artery tube became thin, and the smooth muscle cells shrinked in group CM and group CH. Immunohistochemistry showed that PCNA and Bcl-2 in group M were significantly higher than those in group CN (all<0.05), while Bax expression was significantly lower than that in group CN (<0.05). PCNA in group CM and group CH were significantly lower than that in group M (all<0.05), while Bax expression was significantly higher than that in group M (<0.05). Western blot showed that SOCS-3 protein was significantly decreased in group M, while the p-JAK2, p-STAT1, p-STAT3 were significantly increased (all<0.05). Compared with group M, SOCS-3 protein in group CM and group CH were significantly increased (all<0.05), while the p-JAK2, p-STAT3 were significantly reduced (all<0.05).Curcumin could promote the apoptosis of smooth muscle cells in rats with COPD, and improve the mean pulmonary artery pressure and RVMI through stimulating SOCS-3/JAK2/STAT signaling pathway.
Animals
;
Apoptosis
;
drug effects
;
physiology
;
Arterial Pressure
;
drug effects
;
physiology
;
Curcumin
;
pharmacology
;
Hypertrophy, Right Ventricular
;
pathology
;
physiopathology
;
Janus Kinase 2
;
drug effects
;
physiology
;
Lung
;
chemistry
;
drug effects
;
Male
;
Myocytes, Smooth Muscle
;
drug effects
;
pathology
;
Proliferating Cell Nuclear Antigen
;
drug effects
;
metabolism
;
Proto-Oncogene Proteins c-bcl-2
;
drug effects
;
metabolism
;
Pulmonary Artery
;
drug effects
;
pathology
;
Pulmonary Disease, Chronic Obstructive
;
pathology
;
physiopathology
;
Rats
;
Rats, Wistar
;
STAT Transcription Factors
;
Suppressor of Cytokine Signaling 3 Protein
;
drug effects
;
physiology
;
Ventricular Pressure
;
drug effects
;
bcl-2-Associated X Protein
;
drug effects
;
metabolism
7.Effect of aminophylline and simvastatin on airway inflammation and mucus hypersecretion in rats with chronic obstructive pulmonary disease.
Sheng WANG ; Lingling XIONG ; Xue DENG ; Qun ZHOU ; Chunying LI ; Wei REN ; Chundong ZHU
Journal of Central South University(Medical Sciences) 2016;41(1):37-43
OBJECTIVE:
To observe the role of aminophylline and simvastatin in preventing and curing chronic obstructive pulmonary disease (COPD), and to explore the underlying mechanisms based on airway inflammation and mucus hypersecretion.
METHODS:
The rat model of COPD was established by combination of cigarette smoking with intratracheal lipopolysaccharide (LPS) injection. Male SD rats were randomly divided into 4 groups (n=10 per group): a control group, a COPD group, an aminophylline group and a simvastatin group. The rats in the control group and the COPD group were treated with normal saline once a day via intragastric administration, while the rats in the aminophylline group and the simvastatin group were treated with aminophylline (5 g/L) and simvastatin (0.5 g/L) 1 mL/100 g once a day via intragastric administration, respectively. Pulmonary function and pathological changes in bronchus and lung were observed. The levels of IL-8, IL-17, and TNF-α in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein expressions of TLR4 and mucin 5AC (MUC5AC) in bronchi and lung tissues were detected by real-time PCR and Western blot, respectively.
RESULTS:
Pulmonary function and the pathophysiologic changes in bronchi and lung tissues in the COPD rats were consistent with typical phenotype of COPD. Compared with the control group, lung function indexes were significantly attenuated in the COPD group, while the levels of IL-8, IL-17, and TNF-α in BALF as well as the mRNA and protein levels of MUC5AC and TLR4 were significantly increased. Compared with the COPD group, lung function indexes were significantly increased in the aminophylline group and simvastatin group (P<0.01), while pulmonary pathological damages, the levels of IL-8, IL-17, and TNF-α in BALF as well as the mRNA and protein levels of MUC5AC and TLR4 were significantly decreased (P<0.01). Compared with the aminophylline group, the peak expiratory flow as well as the levels of IL-8, IL-17, and TNF-α in the simvastatin group were elevated (P<0.05). There are no significant difference in the mRNA and protein levels of MUC5AC and TLR4 between the 2 groups (P﹥0.05).
CONCLUSION
Aminophylline and simvastatin can decrease IL-8, IL-17, and TNF-α levels in BALF and inhibit the expression of MUC5AC and TLR4 in airway and lung tissues in COPD rats, suggesting that they may have a preventive and therapeutic effect on COPD through reducing the airway inflammation and mucus hypersecretion.
Aminophylline
;
pharmacology
;
Animals
;
Bronchi
;
metabolism
;
Bronchoalveolar Lavage Fluid
;
chemistry
;
Cytokines
;
chemistry
;
Inflammation
;
drug therapy
;
Lipopolysaccharides
;
Lung
;
metabolism
;
physiopathology
;
Male
;
Mucin 5AC
;
metabolism
;
Mucus
;
metabolism
;
Pulmonary Disease, Chronic Obstructive
;
drug therapy
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Simvastatin
;
pharmacology
;
Smoke
;
adverse effects
;
Smoking
;
adverse effects
;
Toll-Like Receptor 4
;
metabolism
8.Dose-effect relationship between vitamin C and paraquat poisoning rats.
Baoling WEN ; Lei YU ; Yan FANG ; Xiaolong WANG
Journal of Central South University(Medical Sciences) 2016;41(12):1323-1327
To explore the dose-effect relationship between vitamin C and paraquat (PQ) poisoning rats.
Methods: A total of 40 Sprague-Dawley (SD) rats were randomly divided into 4 groups: a control group, a PQ poisoning group, a vitamin C group 1 and a vitamin C group 2 (n=10 in each group). 150 mg/kg PQ was perfused into rat stomach to establish PQ poisoning rat model. In PQ poisoning group, 30 mg/kg methylprednisolone and 2.5 mg/kg cyclophosphamide were injected peritoneally on the basis of PQ poisoning rat model. In vitamin C1 and C2 group, vitamin C was injected at a dosage of 5 or 500 mg/kg, respectively. The control group only received normal saline (NS). The malondialdehyde (MDA), liver and kidney function as well as arterial blood gas in the blood were examined 36 h later. At the end, the rats were killed and took the liver tissues for pathological examination and weight ratio calculation. The glutathione peroxidase (GSH-PX), ctychrome C (Cyt C) in the liver tissues were detected by chromatometry, and the Bcl-2 was detected by Western blot.
Results: Compared with the PQ poisoning group, the MDA and Cyt C were decreased, the GSH-PX was increased, and liver and kidney functions were improved in the vitamin C group 1 (all P<0.01); but in the vitamin C group 2, the MDA increased and liver/kidney functions were impaired (all P<0.01). The expression of Bcl-2 in the PQ poisoning group was lower than that in the control group; compared with the PQ poisoning group, it was increased in the vitamin C1 group, while it was decreased in the vitamin C group 2 (both P<0.01). There was no obvious difference in the lung function, wet/dry weight ratio and pathological changes between the poisoning group and experimental groups (all P>0.05).
Conclusion: Vitamin C at the low dose shows a certain degree of protection for the liver and kidney in the PQ poisoning rats model through it antioxidative activity and anit-apoptosis activity, while vitamin C at the high does may promote oxidation. Meanwhile, vitamin C doesn't show protective effect on lung in the PQ poisoning rats.
Animals
;
Apoptosis
;
drug effects
;
Ascorbic Acid
;
administration & dosage
;
pharmacology
;
Cytochromes c
;
drug effects
;
metabolism
;
Dose-Response Relationship, Drug
;
Glutathione Peroxidase
;
drug effects
;
Kidney
;
drug effects
;
pathology
;
physiopathology
;
Lung
;
drug effects
;
pathology
;
physiopathology
;
Malondialdehyde
;
metabolism
;
Paraquat
;
toxicity
;
Protective Agents
;
pharmacology
;
Proto-Oncogene Proteins c-bcl-2
;
drug effects
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Vitamins
9.Agglutinin isolated from Arisema heterophyllum Blume induces apoptosis and autophagy in A549 cells through inhibiting PI3K/Akt pathway and inducing ER stress.
Li-Xing FENG ; Peng SUN ; Tian MI ; Miao LIU ; Wang LIU ; Si YAO ; Yi-Min CAO ; Xiao-Lu YU ; Wan-Ying WU ; Bao-Hong JIANG ; Min YANG ; De-An GUO ; Xuan LIU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(11):856-864
Arisaema heterophyllum Blume is one of the three medicinal plants known as traditional Chinese medicine Rhizoma Arisaematis (RA). RA has been popularly used to treat patients with convulsions, inflammation, and cancer for a long time. However, the underlying mechanisms for RA effects are still unclear. The present study was designed to determine the cytotoxicity of agglutinin isolated from Arisema heterophyllum Blume (AHA) and explore the possible mechanisms in human non-small-cell lung cancer A549 cells. AHA with purity up to 95% was isolated and purified from Arisaema heterophyllum Blume using hydrophobic interaction chromatography. AHA dose-dependently inhibited the proliferation of A549 cells and induced G phase cell cycle arrest. AHA induced apoptosis by up-regulating pro-apoptotic Bax, decreasing anti-apoptotic Bcl-2, and activating caspase-9 and caspase-3. In A549 cells treated with AHA, the PI3K/Akt pathway was inhibited. Furthermore, AHA induced increase in the levels of ER stress markers such as phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), inositol-requiring enzyme 1α (IRE1α), and phosphorylated c-Jun NH-terminal kinase (p-JNK). AHA also induced autophagy in A549 cells. Staining of acidic vesicular organelles (AVOs) and increase in the levels of LC3II and ATG7 were observed in AHA-treated cells. These findings suggested that AHA might be one of the active components with anti-cancer effects in Arisaema heterophyllum Blume. In conclusion, cytotoxicity of AHA on cancer cells might be related to its effects on apoptosis and autophagy through inhibition of PI3K/Akt pathway and induction of ER stress.
A549 Cells
;
Agglutinins
;
pharmacology
;
Apoptosis
;
drug effects
;
Arisaema
;
chemistry
;
Autophagy
;
drug effects
;
Carcinoma, Non-Small-Cell Lung
;
drug therapy
;
enzymology
;
metabolism
;
physiopathology
;
Cell Line, Tumor
;
Drugs, Chinese Herbal
;
pharmacology
;
Endoplasmic Reticulum Stress
;
drug effects
;
Humans
;
MAP Kinase Signaling System
;
drug effects
;
Phosphatidylinositol 3-Kinases
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
10.NAMPT inhibition synergizes with NQO1-targeting agents in inducing apoptotic cell death in non-small cell lung cancer cells.
Hui-Ying LIU ; Qing-Ran LI ; Xue-Fang CHENG ; Guang-Ji WANG ; Hai-Ping HAO
Chinese Journal of Natural Medicines (English Ed.) 2016;14(8):582-589
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate-limiting step in converting nicotinamide to NAD(+), essential for a number of enzymes and regulatory proteins involved in a variety of cellular processes, including deacetylation enzyme SIRT1 which modulates several tumor suppressors such as p53 and FOXO. Herein we report that NQO1 substrates Tanshione IIA (TSA) and β-lapachone (β-lap) induced a rapid depletion of NAD(+) pool but adaptively a significant upregulation of NAMPT. NAMPT inhibition by FK866 at a nontoxic dose significantly enhanced NQO1-targeting agent-induced apoptotic cell death. Compared with TSA or β-lap treatment alone, co-treatment with FK866 induced a more dramatic depletion of NAD(+), repression of SIRT1 activity, and thereby the increased accumulation of acetylated FOXO1 and the activation of apoptotic pathway. In conclusion, the results from the present study support that NAMPT inhibition can synergize with NQO1 activation to induce apoptotic cell death, thereby providing a new rationale for the development of combinative therapeutic drugs in combating non-small lung cancer.
Abietanes
;
pharmacology
;
Apoptosis
;
drug effects
;
Carcinoma, Non-Small-Cell Lung
;
drug therapy
;
enzymology
;
genetics
;
physiopathology
;
Cell Line, Tumor
;
Cytokines
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Enzyme Inhibitors
;
pharmacology
;
Humans
;
NAD
;
metabolism
;
NAD(P)H Dehydrogenase (Quinone)
;
genetics
;
metabolism
;
Naphthoquinones
;
pharmacology
;
Nicotinamide Phosphoribosyltransferase
;
antagonists & inhibitors
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail