1.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders.
2.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
3.Effects of oral carbohydrate drinks before cesarean section on maternal and infant outcomes
Hao WANG ; Wei WU ; Hui-Qing LU ; Yong WANG ; Hao ZHU ; Jiang-Nan WU ; Yun ZHANG ; Rong HU
Fudan University Journal of Medical Sciences 2024;51(2):218-224
Objective To study the effect of drinking carbohydrate drinks before cesarean section on mothers and neonates,and to explore the application value of drinking carbohydrate drinks before cesarean section.Methods The clinical data of 206 singleton women who underwent selective cesarean section in Obstetrics and Gynecology Hospital,Fudan University from Jun 2020 to Jun 2021 were retrospectively studied.Patients were divided into enhanced recovery after delivery(ERAD)group and control group according to whether drinking carbohydrate drinks before cesarean section.A retrospective cohort study was conducted to analyze the effect of preoperative carb drinks on preoperative fluid supplementation,postoperative rehabilitation and neonatal prognosis.Results Among patients who fasted for less than 12 hours,the ERAD group had a lower fluid supplementation rate and a smaller average fluid supplementation volume compared to the control group(P<0.05).The ERAD group had a lower rate of prokinetic agent using after surgery(P<0.05).Among women without a history of abdominal surgery,the ERAD group had less blood loss 24 hours after surgery(P<0.05).There were no significant differences in postoperative fever rate,incidence of nausea and vomiting,time of first flatus,neonatal apgar score,exit observation room neonatal blood,and neonatal neonatal intensive care unit(NICU)admission rate between the two groups.Among newborns with high-risk factors for hypoglycemia,the ERAD group had lower enter observation room neonatal blood compared to the control group,and a higher incidence of hypoglycemia(P<0.05).Conclusion Oral intake of carbohydrate drinks before cesarean section may be beneficial in reducing fluid supplementation before elective cesarean section,promoting postoperative gastrointestinal function recovery,and reducing postoperative bleeding.However,it may be related to the occurrence of neonatal hypoglycemia.
4.Mechanism of Cigarette Smoke-induced Injury to Alveolar Epithelial Cells
Jian-Lu TIAN ; Hong-Juan WANG ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2024;51(9):2144-2155
Smoking is the leading preventable risk factor for disease and death worldwide. Tobacco and its smoke contain a complex mix of over 9 500 chemical substances, including oxidative gases, heavy metals, and 83 known carcinogens. Long-term smoking is a significant risk factor for respiratory diseases such as acute lung injury, emphysema, and pulmonary fibrosis. Damage to alveolar epithelial cells (AECs) is a common pathological feature in these smoking-related lung diseases. AECs, which line the surface of the alveoli, play a crucial role in preventing overexpansion or collapse, secreting cell factors and surfactants, containing abundant mitochondria, and being essential for lung tissue maturation, gas exchange, metabolism, and repair after damage. Damage to these cells can lead to pulmonary edema and alveolar collapse. Cigarette smoke (CS) can disrupt alveolar epithelial cell function through various pathways, resulting in cell death, tissue damage, and the development of lung diseases.This review summarizes recent research on the damage caused by CS to AECs, showing that CS can promote cell death and damage through induction of oxidative stress, autophagy, endoplasmic reticulum stress, mitochondrial dysfunction, inflammation, and epithelial-mesenchymal transition. It also affects the proliferative function of alveolar type II epithelial cells. The review highlights that CS-induced oxidative stress is a key factor in causing various types of damage, with TRP ion channels serving as important triggers. Inhibiting CS-induced oxidative damage can significantly prevent cell death and subsequent diseases such as pulmonary emphysema. The activation of the same pathway induced by CS can lead to different types of cell damage, potentially encouraging the development of different diseases. CS can either directly induce or indirectly promote cell inflammation through endoplasmic reticulum stress, mitochondrial dysfunction, and senescence. There are interconnected relationships between these mechanisms, and SIRT1 is an important protein in preventing CS-induced AECs damage. Increasing SIRT1 activity can alleviate CS-induced autophagy, endoplasmic reticulum stress, and senescence in various cell damages; its substrate NAD+ is already used clinically, and its effectiveness in COPD treatment deserves further exploration. The impact of CS on cells varies based on concentration: lower concentrations stimulate stress responses or apoptosis, while higher concentrations lead to apoptosis or necrosis through various mechanisms, ultimately impairing lung epithelial function. When external stimuli exceed the cells’ self-healing capacity, they can cause damage to cells, lung epithelial barriers, and alveoli, promoting the development of related lung diseases. Key proteins that play a protective role may serve as potential targets to mitigate cell damage.This review provides insights into the various mechanisms through which CS induces damage to AECs, covering important transcription factors, DNA repair proteins, and membrane channel proteins, paving the way for the study of new mechanisms and pathways. However, there are still unanswered questions, such as the need for further exploration of the upstream pathways of CS-induced autophagy in AECs and the intrinsic mechanisms of CS in enhancing the stem cell properties of AECs and its relationship to the occurrence of lung cancer.It is expected that this article will provide a theoretical basis for future research on the mechanisms of lung epithelial cell damage caused by CS or its individual components and inspire clinical strategies for the prevention and treatment of smoking-related lung diseases.
5.Clinical effects of Bufei Huatan Dingchuan Decoction on patients with acute exacerbation of chronic obstructive pulmonary disease of Lung-Kidney Deficiency Pattern
Hua YANG ; Hong-Hao WU ; Wei LU ; Yu-Mei WANG ; Guo-Qing LI ; Hui ZHU
Chinese Traditional Patent Medicine 2024;46(3):817-821
AIM To explore the clinical effects of Bufei Huatan Dingchuan Decoction on patients with acute exacerbation of chronic obstructive pulmonary disease of Lung-Kidney Deficiency Pattern.METHODS One hundred and thirty-eight patients were randomly assigned into control group(69 cases)for 4-week intervention of conventional treatment,and observation group(69 cases)for 4-week intervention of both Bufei Huatan Dingchuan Decoction and conventional treatment.The changes in clinical effects,MMP-2,HIF-1α,TGF-β1,Gal-3,IL-6,pulmonary function indices(FVC,PEF,FEV1/FVC),6-minute walk distance,CAT score and TCM syndrome score were detected.RESULTS The observation group demonstrated higher total effective rate than the control group(P<0.05).After the treatment,the two groups displayed decreased MMP-2,HIF-1α,TGF-β1,IL-6,Gal-3,CAT score,TCM syndrome score(P<0.05),increased function indices(except for FVC)(P<0.05),and prolonged 6-minute walk distance(P<0.05),especially for the observation group(P<0.05).CONCLUSION For the patients of Lung-Kidney Deficiency Pattern,Bufei Huatan Dingchuan Decoction can alleviate inflammatory reactions,improve body hypoxia state,regulate lung functions,prevent airway tissue remodeling,promote disease recovery,and enhance clinical effects.
6.Electroacupuncture Promotes Functional Recovery after Facial Nerve Injury in Rats by Regulating Autophagy via GDNF and PI3K/mTOR Signaling Pathway.
Jun-Peng YAO ; Xiu-Mei FENG ; Lu WANG ; Yan-Qiu LI ; Zi-Yue ZHU ; Xiang-Yun YAN ; Yu-Qing YANG ; Ying LI ; Wei ZHANG
Chinese journal of integrative medicine 2024;30(3):251-259
OBJECTIVE:
To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway.
METHODS:
Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR.
RESULTS:
The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01).
CONCLUSIONS
EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Electroacupuncture
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Facial Nerve Injuries/therapy*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Beclin-1
;
Glial Cell Line-Derived Neurotrophic Factor
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Autophagy
;
Mammals/metabolism*
7.Exploring the risk "time interval window" of sequential medication of Reduning injection and penicillin G injection based on the correlation between biochemical indexes and metabolomics characteristics
Ming-liang ZHANG ; Yu-long CHEN ; Xiao-yan WANG ; Xiao-fei CHEN ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Wei-xia LI ; Jin-fa TANG
Acta Pharmaceutica Sinica 2024;59(7):2098-2107
Exploring the risk "time interval window" of sequential medication of Reduning injection (RDN) and penicillin G injection (PG) by detecting the correlation between serum biochemical indexes and plasma metabonomic characteristics, in order to reduce the risk of adverse reactions caused by the combination of RDN and PG. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). The changes of biochemical indexes in serum of rats were detected by enzyme-linked immunosorbent assay. It was determined that RDN combined with PG could cause pseudo-allergic reactions (PARs) activated by complement pathway. Further investigation was carried out at different time intervals (1.5, 2, 3.5, 4, 6, and 8 h PG+RDN). It was found that sequential administration within 3.5 h could cause significant PARs. However, PARs were significantly reduced after administration interval of more than 4 h. LC-MS was used for plasma metabolomics analysis, and the levels of serum biochemical indicators and plasma metabolic profile characteristics were compared in parallel. 22 differential metabolites showed similar or opposite trends to biochemical indicators before and after 3.5 h. And enriched to 10 PARs-related pathways such as arachidonic acid metabolism, steroid hormone biosynthesis, linoleic acid metabolism, glycerophospholipid metabolism, and tryptophan metabolism. In conclusion, there is a risk "time interval window" phenomenon in the adverse drug reactions caused by the sequential use of RDN and PG, and the interval medication after the "time interval window" can significantly reduce the risk of adverse reactions.
8.Expert consensus on endodontic therapy for patients with systemic conditions
Xu XIN ; Zheng XIN ; Lin FEI ; Yu QING ; Hou BENXIANG ; Chen ZHI ; Wei XI ; Qiu LIHONG ; Chen WENXIA ; Li JIYAO ; Chen LILI ; Wang ZUOMIN ; Wu HONGKUN ; Lu ZHIYUE ; Zhao JIZHI ; Liang YUHONG ; Zhao JIN ; Pan YIHUAI ; Pan SHUANG ; Wang XIAOYAN ; Yang DEQIN ; Ren YANFANG ; Yue LIN ; Zhou XUEDONG
International Journal of Oral Science 2024;16(3):390-397
The overall health condition of patients significantly affects the diagnosis,treatment,and prognosis of endodontic diseases.A systemic consideration of the patient's overall health along with oral conditions holds the utmost importance in determining the necessity and feasibility of endodontic therapy,as well as selecting appropriate therapeutic approaches.This expert consensus is a collaborative effort by specialists from endodontics and clinical physicians across the nation based on the current clinical evidence,aiming to provide general guidance on clinical procedures,improve patient safety and enhance clinical outcomes of endodontic therapy in patients with compromised overall health.
9.Iodine Nutrition,Thyroid-stimulating Hormone,and Related Factors of Postpartum Women from three Different Areas in China:A Cross-sectional Survey
Yun Xiao SHAN ; Yan ZOU ; Chun Li HUANG ; Shan JIANG ; Wen Wei ZHOU ; Lan Qiu QIN ; Qing Chang LIU ; Yan Xiao LUO ; Xi Jia LU ; Qian De MAO ; Min LI ; Yu Zhen YANG ; Chen Li YANG
Biomedical and Environmental Sciences 2024;37(3):254-265
Objective Studies on the relationship between iodine,vitamin A(VA),and vitamin D(VD)and thyroid function are limited.This study aimed to analyze iodine and thyroid-stimulating hormone(TSH)status and their possible relationships with VA,VD,and other factors in postpartum women. Methods A total of 1,311 mothers(896 lactating and 415 non-lactating)from Hebei,Zhejiang,and Guangxi provinces were included in this study.The urinary iodine concentration(UIC),TSH,VA,and VD were measured. Results The median UIC of total and lactating participants were 142.00 μg/L and 139.95 μg/L,respectively.The median TSH,VA,and VD levels in all the participants were 1.89 mIU/L,0.44 μg/mL,and 24.04 ng/mL,respectively.No differences in the UIC were found between lactating and non-lactating mothers.UIC and TSH levels were significantly different among the three provinces.The rural UIC was higher than the urban UIC.Obese mothers had a higher UIC and a higher prevalence of excessive TSH.Higher UICs and TSHs levels were observed in both the VD deficiency and insufficiency groups than in the VD-sufficient group.After adjustment,no linear correlation was observed between UIC and VA/VD.No interaction was found between vitamins A/D and UIC on TSH levels. Conclusion The mothers in the present study had no iodine deficiency.Region,area type,BMI,and VD may be related to the iodine status or TSH levels.
10.Effect of VEGF on the expression of genes related to ovarian steroid synthesis in mice and its mechanism
Zhi-Hui ZHANG ; Hong-Xia GAO ; Guo-Qing WANG ; Wei HOU ; Chang ZOU ; Xiao-Dan LU
Medical Journal of Chinese People's Liberation Army 2024;49(6):679-685
Objective To investigate the effect of vascular endothelial growth factor(VEGF)on the expression of genes related to ovarian steroid synthesis in mice and its underlying mechanism.Methods A transgenic mouse model with tetracycline-reversible regulation of VEGF expression was used,and the genotype of mice was identified by polymerase chain reaction(PCR).Twenty mice were divided into normal VEGF expression group(Dox+,n=10)and VEGF expression inhibition group(Dox-,n=10)by feeding them doxycycline.Western blotting was used to detect the expression of VEGF protein in ovarian tissues.Fluorescence quantitative PCR was used to detect the mRNA expression of VEGF,KDR and genes known to play roles in follicle development,such as follicle-stimulating hormone(FSH)and inhibin B(INHBB).HE staining was used to observe changes in ovarian tissue.Total RNA was extracted from mouse ovarian tissues for transcriptome sequencing,and the relevant differential genes were analyzed by FPKM and log2FC values.Results Compared with the Dox+group,the mRNA and protein levels of VEGF in the Dox-group significantly reduced,and the mRNA levels of KDR also significantly decreased(P<0.05).HE staining results showed that compared with the Dox+group,follicular development was impaired and atresia follicles appeared in the Dox-group.Sequencing analysis identified that significant differences in follicular development-related genes and steroid synthesis-related genes between the two groups(P<0.05).Enrichment analysis showed that VEGF in mouse ovaries mainly regulates ovarian steroidogenesis and other pathways.Fluorescence quantitative PCR results demonstrated that compared with the Dox+group,the follicular development-related genes(INHBB and FSHR)in the ovarian tissues of the Dox-group were significantly up-regulated(P<0.05),whereas the key genes of steroid synthesis(StAR,CYP11A1,3β-HSD)were significantly down-regulated(P<0.05).The quantitative results were basically consistent with the sequencing results.Conclusion Mice with inhibited VEGF exhibited ovarian follicular dysplasia,potentially due to the mechanism whereby VEGF inhibition downregulated the expression of genes associated with steroid synthesis,such as FSH and INHBB,thereby obstructing cholesterol metabolism.

Result Analysis
Print
Save
E-mail