1.Manufacture and mechanical property on zirconia abutments with a titanium base in dental implant restoration
Huan WANG ; Jing LU ; Ying LI ; Maohua MENG ; Jiayu SHU ; Yuncai LUO ; Wenjie LI ; Qiang DONG
Chinese Journal of Tissue Engineering Research 2025;29(10):2171-2177
BACKGROUND:With the development of computer-aided design and computer-aided manufacturing technology,zirconia abutments with a titanium base are widely used in clinic due to its good application advantages,but there are still some problems and a lack of consensus design standards. OBJECTIVE:To review the fabrication methods of Ti-base zirconia abutment,and the effect of abutment connection,emergence design,abutment angle,and bonding on mechanical properties of Ti-base zirconia abutment. METHODS:Relevant literature published from 2010 to 2023 was searched in CNKI and PubMed databases with the search terms"zirconia abutment,titanium base"in Chinese and English,respectively.The search time limit was extended for some classical literature.The relevant literature was obtained through inclusion and exclusion criteria,and 57 eligible documents were included for review. RESULTS AND CONCLUSION:It is recommended that clinicians try to select antirotational titanium bases or rotational titanium bases with a Morse taper connection.Implants should be placed in the correct axial angulation of not more than 15° or with an inclination to the palatal side when using angled zirconia abutments.When a≥30° labial inclination is followed for implant placement,the bite force must be decreased effectively to reduce the risk of mechanical and biological complications of implants,abutments,and prostheses.Ti-base zirconia abutments with a higher gingival height should be selected,and its restorative angle should not exceed 40°.Multilink Hybrid Abutment could be the first choice for extraoral bonding of zirconia abutment to titanium bases.
2.Correlation between IL-6 , chemerin , lipid ratio and insulin resistance in obese patients with type 2 diabetes mellitus
Yili LUO ; Han CAO ; Lu LIU ; Lijuan ZHANG
Journal of Public Health and Preventive Medicine 2025;36(1):45-48
Objective To investigate the correlation between insulin resistance and interleukin-6 (IL-6), chemerin, total cholesterol (TC)/high density lipoprotein cholesterol (HDL-C) ratio, triglyceride (TG)/HDL-C ratio, low density lipoprotein cholesterol (LDL-C)/HDL-C ratio and insulin resistance in obese patients with type 2 diabetes mellitus (T2DM), and to provide scientific basis for T2DM prevention and control. Methods A total of 355 obese T2DM patients in Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine were selected from January 2021 to December 2023. IL-6, chemerin and lipids were detected, and the assessment of insulin resistance was conducted through the homeostasis model assessment of insulin resistance (HOMA-IR). Results Among the 355 obese T2DM patients, there were 280 cases of insulin resistance, with the incidence rate of 78.87%. The BMI, IL-6, chemerin, TC/HDL-C, LDL-C/HDL-C, and TG/HDL-C in the insulin resistance group were higher than those in the non-insulin resistance group (P<0.05). The above insulin resistant patients were divided into 4 subgroups by means of insulin resistance, and there were significant differences in BMI, IL-6, chemerin, and TG/HDL-C among the subgroups (P<0.05). IL-6, chemerin, and TG/HDL-C were positively correlated with HOMA-IR in obese T2DM patients (P<0.05), while TC/HDL-C and LDL-C/HDL-C had no significant correlation with HOMA-IR (P>0.05). BMI, IL-6, chemerin, and TG/HDL-C were all influencing factors of insulin resistance in obese T2DM patients (P<0.05). Conclusion IL-6, chemerin and TG/HDL-C are correlated with insulin resistance in obese patients with T2DM and are influencing factors for the occurrence of insulin resistance.
3.Advances in the application of digital technology in orthodontic monitoring
WANG Qi ; LUO Ting ; LU Wei ; ZHAO Tingting ; HE Hong ; HUA Fang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(1):75-81
During orthodontic treatment, clinical monitoring of patients is a crucial factor in determining treatment success. It aids in timely problem detection and resolution, ensuring adherence to the intended treatment plan. In recent years, digital technology has increasingly permeated orthodontic clinical diagnosis and treatment, facilitating clinical decision-making, treatment planning, and follow-up monitoring. This review summarizes recent advancements in digital technology for monitoring orthodontic tooth movement, related complications, and appliance-wearing compliance. It aims to provide insights for researchers and clinicians to enhance the application of digital technology in orthodontics, improve treatment outcomes, and optimize patient experience. The digitization of diagnostic data and the visualization of dental models make chair-side follow-up monitoring more convenient, accurate, and efficient. At the same time, the emergence of remote monitoring technology allows orthodontists to promptly identify oral health issues in patients and take corresponding measures. Furthermore, the multimodal data fusion method offers valuable insights into the monitoring of the root-alveolar relationship. Artificial intelligence technology has made initial strides in automating the identification of orthodontic tooth movement, associated complications, and patient compliance evaluation. Sensors are effective tools for monitoring patient adherence and providing data-driven support for clinical decision-making. The application of digital technology in orthodontic monitoring holds great promise. However, challenges like technical bottlenecks, ethical considerations, and patient acceptance remain.
4.Application of Huangkui Capsules in Diabetic Kidney Disease: A Review
Jia LUO ; Beile JIANG ; Qiuxiang HE ; Shilong LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):314-324
Diabetic kidney disease (DKD) is a kidney disease caused by hyperglycemia,which is one of the most common microvascular complications of diabetes. Due to the high incidence of diabetes,the incidence of DKD has also increased year by year,and DKD has become a global public health problem. The pathogenesis of DKD is related to mechanisms such as oxidative stress,inflammation,renal fibrosis,and decreased mitophagy activity,which are developed under a variety of complex mechanisms. In traditional Chinese medicine,it is believed that the incidence of DKD is closely related to damp heat. Therefore,it is necessary to grasp the treatment method of clearing heat and removing dampness in clinical medication. Huangkui Capsules (HKC) have the effect of clearing damp heat,detoxifying, and detumescence. Because of its unique curative effect on DKD,HKC is often used in the treatment of DKD. HKC plays a role in the treatment of DKD with a variety of pharmacokinetic and pharmacodynamic processes. In many laboratory studies,it has been found that the specific mechanisms of HKC in the treatment of DKD include increasing mitophagy,reducing mitochondrial damage,reducing renal fibrosis,controlling inflammatory response,and inhibiting oxidative stress,which can achieve the purpose of reducing renal damage and promoting renal function. Some clinical studies have also verified that the application of HKC alone can exert renal protective function through anti-inflammatory,anti-oxidative stress,anti-renal fibrosis effects,as well as reduction of urinary protein. Since DKD is not a single injury of renal function,it is often accompanied by problems in blood pressure,blood lipids,blood circulation,body immunity, and other aspects. Therefore,the combination of HKC with other drugs can often achieve more comprehensive results,improve the advantages of various drugs,and improve the therapeutic effect. The combination of drugs such as antihypertensive,lipid-lowering, vascular circulation improvement,immunity inhibition,and anti-oxidative stress with HKC has achieved good results. In addition,HKC is often used in combination with other Chinese patent medicines in clinics. The application of HKC in the treatment of DKD has made some progress,but there are still many places worthy of further study,and the research on the mechanism of HKC is not comprehensive enough. The research on its long-term effect and safety in clinical application is relatively lacking,and the drug variety is relatively single when combined with certain drugs. These problems deserve further attention. Finally,it is necessary to pay attention to the promotion and application of HKC in clinical practice so that HKC can be better applied in clinical practice and better solve practical problems for patients.
5.Application of Huangkui Capsules in Diabetic Kidney Disease: A Review
Jia LUO ; Beile JIANG ; Qiuxiang HE ; Shilong LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):314-324
Diabetic kidney disease (DKD) is a kidney disease caused by hyperglycemia,which is one of the most common microvascular complications of diabetes. Due to the high incidence of diabetes,the incidence of DKD has also increased year by year,and DKD has become a global public health problem. The pathogenesis of DKD is related to mechanisms such as oxidative stress,inflammation,renal fibrosis,and decreased mitophagy activity,which are developed under a variety of complex mechanisms. In traditional Chinese medicine,it is believed that the incidence of DKD is closely related to damp heat. Therefore,it is necessary to grasp the treatment method of clearing heat and removing dampness in clinical medication. Huangkui Capsules (HKC) have the effect of clearing damp heat,detoxifying, and detumescence. Because of its unique curative effect on DKD,HKC is often used in the treatment of DKD. HKC plays a role in the treatment of DKD with a variety of pharmacokinetic and pharmacodynamic processes. In many laboratory studies,it has been found that the specific mechanisms of HKC in the treatment of DKD include increasing mitophagy,reducing mitochondrial damage,reducing renal fibrosis,controlling inflammatory response,and inhibiting oxidative stress,which can achieve the purpose of reducing renal damage and promoting renal function. Some clinical studies have also verified that the application of HKC alone can exert renal protective function through anti-inflammatory,anti-oxidative stress,anti-renal fibrosis effects,as well as reduction of urinary protein. Since DKD is not a single injury of renal function,it is often accompanied by problems in blood pressure,blood lipids,blood circulation,body immunity, and other aspects. Therefore,the combination of HKC with other drugs can often achieve more comprehensive results,improve the advantages of various drugs,and improve the therapeutic effect. The combination of drugs such as antihypertensive,lipid-lowering, vascular circulation improvement,immunity inhibition,and anti-oxidative stress with HKC has achieved good results. In addition,HKC is often used in combination with other Chinese patent medicines in clinics. The application of HKC in the treatment of DKD has made some progress,but there are still many places worthy of further study,and the research on the mechanism of HKC is not comprehensive enough. The research on its long-term effect and safety in clinical application is relatively lacking,and the drug variety is relatively single when combined with certain drugs. These problems deserve further attention. Finally,it is necessary to pay attention to the promotion and application of HKC in clinical practice so that HKC can be better applied in clinical practice and better solve practical problems for patients.
6.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
7.Analysis of the management effect of community pharmacy outpatient service on patients with type 2 diabetes mellitus
Lanying WANG ; Gaofeng LU ; Meijuan YUAN ; Weiling LI ; Yingyi LUO ; Feng XU
Journal of Pharmaceutical Practice and Service 2025;43(7):357-361
Objective To explore the effect of community pharmacy outpatient service on patients with type 2 diabetes mellitus. Methods A non-randomized controlled study was conducted, and type 2 diabetes patients managed in the community were divided into an intervention group of 112 cases and a control group of 110 cases. The control group received routine medication guidance during general practice outpatient visits, while the intervention group received comprehensive pharmacy outpatient service intervention based on routine medication guidance in general practice. Follow-up visits were conducted every 3 months. Repeated measurement analysis of variance and multivariate linear regression analysis were used to evaluate the intervention effect of the pharmacy outpatient service. Results Fasting blood glucose and glycosylated hemoglobin levels in the intervention group showed a decreasing trend with the increase of intervention time compared to pre-intervention time (P<0.01), with increased duration of weekly exercise, decreased staple food intake, increased vegetable intake, and increased medication adherence score (P<0.01). After adjusting for confounding factors through multivariate linear regression model, pharmacy outpatient intervention was found to be an independent protective factor for fasting blood glucose level (β=−0.891, P<0.01) and glycosylated hemoglobin level (β=−0.760, P<0.01) in the study subjects. Conclusion The community pharmacy outpatient service could enhance the self-management ability of patients with type 2 diabetes mellitus, and effectively improve patients’ fasting blood glucose and glycosylated hemoglobin.
8.Research progress on the chemical composition and antidepressant mechanism of volatile oils of traditional Chinese medicine
Yifei ZHANG ; Lu CHENG ; Mingshi REN ; Dao GUO ; Fengjiao KUANG ; Zonghua KANG ; Jianguang LUO ; Feihua WU
Journal of China Pharmaceutical University 2025;56(1):22-30
Depressive disorder is a mental illness characterized by poor mood and cognitive dysfunction caused by a range of complicated factors. Antidepressants have strong short-term efficacy in clinical application, yet with significant adverse effects and resistance in long-term use. Essential oils are small molecular compounds mainly composed of monoterpenes and sesquiterpenes, most of which are characterized by aromatic odors, easy permeability through the blood-brain barrier, and low toxic side effects. Volatile oil from traditional Chinese medicine can regulate neurotransmitter monoamine, hypothalamic-pituitary-adrenal axis, brain-derived neurotrophic factor, neuroinflammation and oxidative stress, and intestinal microbiota-gut-brain axis to exert an antidepressant effect through multiple pathways and targets. This review summarizes the main antidepressant chemical components of essential oil of traditional Chinese medicine, their pharmacological mechanisms and clinical application, aiming to provide some reference for further development and clinical application of essential oil of traditional Chinese medicine.
9.Association between medium to long term ambient PM 2.5 exposure and overweight/obesity among primary and secondary school students
Chinese Journal of School Health 2025;46(7):937-940
Objective:
To investigate the association between medium to long term PM 2.5 exposure around school areas and overweight/obesity among primary and secondary school students in Guangxi, providing data support and theoretical foundations for scientifically addressing overweight and obesity in primary and secondary school students.
Methods:
From September to November 2023, a stratified cluster random sampling method was employed to select 251 183 students aged 7-18 years (grade 1 to grade 12) from 14 prefecture level cities (111 districts and counties) in Guangxi. PM 2.5 mass concentration data were obtained from the Tracking Air Pollution in China (TAP) dataset. Preliminary comparative analysis was conducted using the Mann-Whitney U test, while binary Logistic regression models were applied to quantify the relationship between PM 2.5 exposure and overweight/obesity. Restricted cubic spline analysis was further utilized to examine the nonlinear association between PM 2.5 concentration and overweight/obesity risk.
Results:
The detection rate of overweight/obesity among Guangxi students in 2023 was 19.5%. The median PM 2.5 concentration in the year prior to the study was higher in the overweight/obesity group (23.22 μg/m 3) compared to the non overweight/obesity group (22.63 μg/m 3) ( Z=-15.66, P <0.01), and consistent trends were observed across gender (male/female) and educational stage (primary/junior/senior high school) subgroups (all P <0.01). Binary Logistic regression revealed that for every 10 μg/m 3 increase in the annual average PM 2.5 concentration, the risk of overweight/obesity increased by 12% ( OR=1.12, 95%CI=1.09- 1.15 , P <0.01). Restricted cubic spline analysis indicated a nonlinear relationship between monthly PM 2.5 levels and overweight/obesity risk ( P trend <0.01). Below 22.68 μg/m 3, PM 2.5 exposure showed no significant association with obesity risk; above the threshold, the risk increased with rising PM 2.5 levels.
Conclusion
Medium to long term PM 2.5 exposure around school environments is significantly associated with overweight/obesity among primary and secondary school students.
10.Characterization of Medicinal Amber via Multispectral Analysis Combined with ICP-MS
Donghan BAI ; Zerun LI ; Xueying XIN ; Lu LUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):176-183
ObjectiveTo systematically investigate the identification characteristics of medicinal amber, elucidate its microscopic features, crystal structural properties, and elemental composition, and thereby provide a scientific foundation for quality control and authenticity verification. MethodsThirty-nine batches of amber samples were collected and analyzed through integrated techniques including morphological analysis, microscopic identification, powder X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and inductively coupled plasma mass spectrometry (ICP-MS) to evaluate their morphological attributes, phase composition, molecular vibrational modes, and trace element profiles. Among them, the XRD experiment used Cu Kα radiation (λ=1.540 6 Å), with a scanning angle range of 10° to 70° (2θ) and a step size of 0.02°, the Raman spectroscopy experiment employed a 785 nm laser, with a spectral measurement range of 3 400 to 50 cm-1, a laser power of 300 mW, a laser intensity of 30%, and a scanning time of 100 to 1 000 ms, the infrared spectroscopy experiment used a carbon-sulfur lamp, with a scanning range of 4 000 to 500 cm-1, a resolution of 4 cm-1, and 3 scans, the ICP-MS experiment utilized frequency power of 1.2 kW, a double-pass cyclonic spray chamber, a sample introduction system flow rate of 0.7-1.0 L·min-1, and an auxiliary gas flow of 0.2 L·min-1. ResultsUnder orthogonal polarized light microscopy, medicinal amber exhibited an isotropic homogeneous structure, with partial samples containing inorganic impurities such as AsS and SiO₂. FTIR spectra revealed characteristic absorption peaks at 2 932-2 939 cm-1 (C-H stretching vibrations), 1 705-1 728 cm-1 (C=O stretching vibrations), and 880-887 cm-1 (C=C deformation vibrations), confirming the oxidative polymerization of terpenoid resin. Raman spectroscopy further identified distinctive peaks at 2 925 cm-1, 2 870 cm-1 (saturated C-H stretching), and 1 648 cm-1 (C=C stretching), consistent with the structural features of oxidized-polymerized resin. ICP-MS analysis demonstrated that S, Al, Si, Fe, Na, and Ca were the predominant trace elements in medicinal amber. ConclusionThis study comprehensively evaluated medicinal amber's morphological attributes, phase composition, molecular vibrational modes, and trace elements through multimodal analytical techniques. The findings establish data support for establishing quality standards for medicinal amber and distinguishing it from synthetic resin imitations.


Result Analysis
Print
Save
E-mail