1.The mechanism of Prim-O-glucosylcimifugin in improving cholesterol metabolism in osteoarthritis chondrocytes via lncRNA NEAT1/miR-128-3p
Yanming LIN ; Haishui TU ; Shujie LAN ; Chao LI ; Shiyu LU ; Yue CHEN ; Changlong FU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):55-67
Objective:
To investigate the mechanism of action of Prim-O-glucosylcimifugin (POG) to improve cholesterol metabolism in osteoarthritic (OA) chondrocytes based on the long noncoding RNA nuclear-enriched transcript 1 (lncRNA NEAT1)/microRNA-128-3p (miR-128-3p) pathway.
Methods:
For in vivo experiments, 60 mice were divided into the normal, sham operation, model, and POG groups using the random number table method, with 15 mice per group. The osteoarthritis mouse model was constructed using the modified Hulth method in the model and POG groups. Mice in the POG group were administered 30 mg/(kg·d)POG by gavage. The other groups were administered an equal amount of normal saline for 8 weeks. The cartilage tissue structure of mice in each group was observed using hematoxylin and eosin staining. Real-time PCR was used to detect changes in the lncRNA NEAT1 and miR-128-3p mRNA expression levels in the cartilage tissues of mice. Western blotting was used to detect the protein expressions of ATP-binding cassette transporter A1 (ABCA1), liver X receptor β (LXRβ), matrix metalloprotein-3 (MMP-3), and B-lymphoblastoma-2-associated X protein (Bax) in articular cartilage of mice. An enzyme-linked immunosorbent assay was used to measure the tumor necrosis factor-α (TNF-α) content in the synovial fluid of mice. A biochemical microplate assay was used to measure the total cholesterol level in the synovial fluid of mice. The in vitro experiments were divided into the negative control, interleukin-1β(IL-1β), IL-1β+ POG, IL-1β+ oe-lncRNA NEAT1, IL-1β+ oe-lncRNA NEAT1 + POG, IL-1β + miR-128-3p inhibition, and IL-1β+ miR-128-3p inhibition+ POG groups. An OA model was established by inducing chondrocytes with IL-1β for 24 h, and 90 mg/L of POG and miR-128-3p inhibitor(50 nmol/L) were administered for 48 h as an intervention. lncRNA NEAT1 expression in chondrocytes was detected using fluorescence in situ hybridization. A dual luciferase assay was used to detect the targeting relationship between lncRNA NEAT1 and miR-128-3p. Lentiviral plasmids overexpressing lncRNA NEAT1 were used to transfect mouse chondrocytes. Real-time PCR was used to detect the effect of lncRNA NEAT1 overexpression on the mRNA level of miR-128-3p in chondrocytes. Western blotting was used to detect ABCA1, LXRβ, MMP-3, and Bax protein expression in chondrocytes after lncRNA NEAT1 overexpression and miR-128-3p inhibition.
Results:
POG significantly reduced OA cartilage tissue damage. Compared with the model group, the lncRNA NEAT1 mRNA level decreased, whereas the miR-128-3p mRNA level increased in the cartilage tissue of the POG group (P<0.05). Compared with the model group, ABCA1 and LXRβ protein expression increased in the POG group, whereas MMP-3 and Bax protein expression decreased (P<0.05). The TNF-α levels decreased in the POG group compared to the model group (P<0.05). Compared with the model group, the total cholesterol level in the synovial fluid of the joint of mice in the POG group decreased (P<0.05). The mean fluorescence intensity of lncRNA NEAT1 in the IL-1β+ POG group decreased compared with the IL-1β group (P<0.05). The relative luciferase activity in the miR-128-3p mimics group bound to the lncRNA NEAT1-WT plasmid decreased compared with the miR-128-3p negative control group (P<0.05). The lncRNA NEAT1 mRNA levels decreased, whereas the miR-128-3p mRNA levels increased in the IL-1β+ oe-lncRNA NEAT1 + POG group compared with the IL-1β+ oe-lncRNA NEAT1 group (P<0.05). Compared with the IL-1β+ POG group, ABCA1 and LXRβ protein expression decreased, whereas MMP-3 and Bax protein expression increased (P<0.05).
Conclusion
POG mediates lncRNA NEAT1/miR-128-3p to improve cholesterol metabolism in OA chondrocytes.
2.Working practices in eliminating the public health crisis caused by viral hepatitis in Hainan Province of China
Weihua LI ; Changfu XIONG ; Taifan CHEN ; Bin HE ; Dapeng YIN ; Xuexia ZENG ; Feng LIN ; Biyu CHEN ; Xiaomei ZENG ; Biao WU ; Juan JIANG ; Lu ZHONG ; Yuhui ZHANG
Journal of Clinical Hepatology 2025;41(2):228-233
In 2022, Hainan provincial government launched the project for the prevention and control of viral hepatitis with the goals of a hepatitis B screening rate of 90%, a diagnostic rate of 90%, and a treatment rate of 80% among people aged 18 years and above by the year 2025, and the main intervention measures include population-based prevention, case screening, antiviral therapy, and health management. As of December 31, 2024, a total of 6.875 million individuals in the general population had been screened for hepatitis B, with a screening rate of 95.6%. A total of 184 710 individuals with positive HBsAg were identified, among whom 156 772 were diagnosed through serological reexamination, resulting in a diagnostic rate of 84.9%. A total of 50 742 patients with chronic hepatitis B were identified, among whom 42 921 had hepatitis B-specific health records established for health management, with a file establishment rate of 84.6%. A total of 31 553 individuals received antiviral therapy, with a treatment rate of 62.2%. A total of 2.503 million individuals at a high risk of hepatitis C were screened, among whom 4 870 tested positive for HCV antibody and 3 858 underwent HCV RNA testing, resulting in a diagnostic rate of 79.2%, and 1 824 individuals with positive HCV RNA were identified, among whom 1 194 received antiviral therapy, with a treatment rate of 65.5%. In addition, 159 301 individuals with negative HBsAg and anti-HBs and an age of 20 — 40 years were inoculated with hepatitis B vaccine free of charge. Through the implementation of the project for the prevention and control of viral hepatitis, a large number of hepatitis patients have been identified, treated, and managed in the province within a short period of time, which significantly accelerates the efforts to eliminate the crisis of viral hepatitis.
3.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
4.Effect of Serum Containing Zhenwutang on Apoptosis of Myocardial Mast Cells and Mitochondrial Autophagy
Wei TANG ; Meiqun ZHENG ; Xiaolin WANG ; Zhiyong CHEN ; Chi CHE ; Zongqiong LU ; Jiashuai GUO ; Xiaomei ZOU ; Lili XU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):11-21
ObjectiveTo explore the effect of serum containing Zhenwutang on myocardial mast cell apoptosis induced by angiotensin Ⅱ (AngⅡ) and the mechanism of the correlation between apoptosis and mitochondrial autophagy. MethodsIn this experiment, AngⅡ and serum containing Zhenwutang with different concentrations were used to interfere with H9C2 cardiomyocytes for 24 h, and the survival rate of H9C2 cardiomyocytes was detected by cell counting kit-8 (CCK-8) to screen the optimal concentration for the experiment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the content of B-type natriuretic peptide (BNP) in cell culture supernatant, and immunofluorescence was used to detect the cell surface area to verify the construction of the myocardial mast cell model. Subsequently, the experiment was divided into a blank group (20% blank serum), a model group (20% blank serum + 5×10-5 mol·L-1 AngⅡ), low-, medium-, and high-dose (5%, 10% and 20%) serum containing Zhenwutang groups, an autophagy inhibitor group (1×10-4 mol·L-1 3-MA), and autophagy inducer group (1×10-7 mol·L-1 rapamycin). The apoptosis level of H9C2 cells and the changes of mitochondrial membrane potential were detected by flow cytometry. The lysosomal probe (Lyso Tracker) and mitochondrial probe (Mito Tracker) co-localization was employed to detect autophagy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect Caspase-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-related X protein (Bax), and cytochrome C (Cyt C) in apoptosis-related pathways and the relative mRNA expression of ubiquitin ligase (Parkin), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and p62 protein in mitochondrial autophagy-related pathways. Western blot was used to detect cleaved Caspase-3, cleaved Caspase-9, Bax, Bcl-2, and Cyt C in apoptosis-related pathways, phosphorylated ubiquitin ligase (p-Parkin), phosphorylated PTEN-induced kinase 1 (p-PINK1), p62, and Bcl-2 homology domain protein Beclin1 in mitochondrial autophagy-related pathways, and the change of microtubule-associated protein 1 light chain 3 (LC3) Ⅱ/Ⅰ ratio. ResultsCCK-8 showed that when the concentration of AngⅡ was 5×10-5 mol·L-1, the cell activity was the lowest, and there was no cytotoxicity. At this concentration, the surface area of cardiomyocytes was significantly increased (P<0.01), and the content of BNP in the supernatant of culture medium was significantly increased (P<0.05). Therefore, AngⅡ with a concentration of 5×10-5 mol·L-1 was selected for the subsequent modeling of myocardial mast cells. Compared with the blank group, the model group and the autophagy inhibitor 3-MA group had a significantly increased apoptosis rate (P<0.01) and significantly decreased mitochondrial membrane potential (P<0.01). The results of immunofluorescence co-localization showed that compared with the blank group, the model group had a significantly decreased number of red and green fluorescence spots. The results of Real-time PCR showed that compared with that in the blank group, the relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 in the model group was significantly up-regulated (P<0.01), while the relative mRNA expression of Bcl-2, Parkin, and PINK1 was significantly down-regulated (P<0.01). In addition, the relative protein expression of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 was significantly up-regulated (P<0.01). The LC3Ⅱ/Ⅰ was significantly decreased, and the relative protein expression of Bcl-2, p-Parkin, p-PINK1, and Beclin1 was significantly down-regulated (P<0.01). Compared with the model group, the serum containing Zhenwutang groups and the autophagy inducer group had significantly decreased apoptosis rate (P<0.01), and the decrease ratio of mitochondrial membrane potential is significantly lowered (P<0.01) in a dose-dependent manner. Additionally, both red and green fluorescence spots became more in these groups. In the 3-MA group, the number of red and green fluorescence spots decreased significantly. The relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 was significantly down-regulated (P<0.05, P<0.01), while that of Bcl-2, Parkin, and PINK1 was significantly up-regulated (P<0.01). In the serum containing Zhenwutang groups, the relative protein expression levels of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 were significantly down-regulated (P<0.05,P<0.01). The LC3Ⅱ/Ⅰ was significantly increased, and the relative protein expression levels of Bcl-2, p-Parkin, p-PINK1, and Beclin1 were significantly up-regulated (P<0.01). ConclusionThe serum containing Zhenwutang can reduce the apoptosis of myocardial mast cells and increase mitochondrial autophagy. This is related to the inhibition of intracellular Bax/Bcl-2/Caspase-3 apoptosis pathway and regulation of Parkin/PINK1 mitochondrial autophagy pathway.
5.Research advances on traditional Chinese medicine monomers and compounds intervening in ankylosing spondy-litis-related signaling pathways
Haidong ZHOU ; Yaohong LU ; Liangshen HU ; Li GONG ; Maohua LIN ; Shipeng HAO ; Jianbin YAN ; Weihui CHEN ; Shaoyong FAN
China Pharmacy 2025;36(3):373-378
Ankylosing spondylitis is a chronic immunoinflammatory disease that mainly affects the spine and the sacroiliac joint, the mechanism of which is closely related to signaling pathways, such as osteoprotegerin (OPG)/receptor activator of nuclear factor-κB (RANK)/RANK ligand, mitogen-activated protein kinase (MAPK), Wnt/β-catenin (β-catenin), phosphoinositide 3- kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR). Traditional Chinese medicine has the characteristics of multiple components and targets, and is widely used for the treatment of autoimmune diseases due to its low toxicity, strong specificity, and high efficacy. This review found that monomers and compounds of traditional Chinese medicine can exert anti ankylosing spondylitis effects by intervening in the aforementioned signaling pathways, regulating immune inflammatory responses, and inhibiting biological processes such as bone destruction, ectopic osteogenic differentiation, cell apoptosis, and autophagy.
6.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
7.A new classification of atlas fracture based on computed tomography: reliability, reproducibility, and preliminary clinical significance
Yun-lin CHEN ; Wei-yu JIANG ; Wen-jie LU ; Xu-dong HU ; Yang WANG ; Wei-hu MA
Asian Spine Journal 2025;19(1):3-9
Methods:
Seventy-five patients with atlas fracture were included from January 2015 to December 2020. Based on the anatomy of the fracture line, atlas fractures were divided into three types. Each type was divided into two subtypes according to the fracture displacement. Unweighted Cohen kappa coefficients were applied to evaluate the reliability and reproducibility.
Results:
According to the new classification, 17 cases of type A1, 12 of type A2, seven of type B1, 13 of type B2, 12 of type C1, and 14 of type C2 were identified. The K-values of the interobserver and intraobserver reliability were 0.846 and 0.912, respectively, for the new classification. The K-values of interobserver reliability for types A, B, and C were 0.843, 0.799, and 0.898, respectively. The K-values of intraobserver reliability for types A, B, and C were 0.888, 0.910, and 0.935, respectively. The mean K-values of the interobserver and intraobserver reliability for subtypes were 0.687 and 0.829, respectively.
Conclusions
The new classification of atlas fractures can cover nearly all atlas fractures. This system is the first to evaluate the severity of fractures based on the C1 articular facet and fracture displacement and strengthen the anatomy ring of the atlas. It is concise, easy to remember, reliable, and reproducible.
8.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
9.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
10.A new classification of atlas fracture based on computed tomography: reliability, reproducibility, and preliminary clinical significance
Yun-lin CHEN ; Wei-yu JIANG ; Wen-jie LU ; Xu-dong HU ; Yang WANG ; Wei-hu MA
Asian Spine Journal 2025;19(1):3-9
Methods:
Seventy-five patients with atlas fracture were included from January 2015 to December 2020. Based on the anatomy of the fracture line, atlas fractures were divided into three types. Each type was divided into two subtypes according to the fracture displacement. Unweighted Cohen kappa coefficients were applied to evaluate the reliability and reproducibility.
Results:
According to the new classification, 17 cases of type A1, 12 of type A2, seven of type B1, 13 of type B2, 12 of type C1, and 14 of type C2 were identified. The K-values of the interobserver and intraobserver reliability were 0.846 and 0.912, respectively, for the new classification. The K-values of interobserver reliability for types A, B, and C were 0.843, 0.799, and 0.898, respectively. The K-values of intraobserver reliability for types A, B, and C were 0.888, 0.910, and 0.935, respectively. The mean K-values of the interobserver and intraobserver reliability for subtypes were 0.687 and 0.829, respectively.
Conclusions
The new classification of atlas fractures can cover nearly all atlas fractures. This system is the first to evaluate the severity of fractures based on the C1 articular facet and fracture displacement and strengthen the anatomy ring of the atlas. It is concise, easy to remember, reliable, and reproducible.


Result Analysis
Print
Save
E-mail