1.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
		                        		
		                        			
		                        			The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders. 
		                        		
		                        		
		                        		
		                        	
2.Therapeutic Effect of Cranial Painkiller Pills' Extract Powder in Treatment of Trigeminal Neuralgia Induced by Injection of Talci Pulvis into Infraorbital Foramen of Model Rats Based on OTULIN-regulated Neuroinflammation
Shuran LI ; Xinwei WANG ; Jing SUN ; Dan XIE ; Ronghua ZHAO ; Lei BAO ; Zihan GENG ; Qiyue SUN ; Jingsheng ZHANG ; Yaxin WANG ; Xihe CUI ; Xinying LI ; Bing HAN ; Tianjiao LU ; Xiaolan CUI ; Liying LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):21-28
		                        		
		                        			
		                        			ObjectiveThis paper aims to verify the therapeutic effect of Cranial Painkiller pills' extract powder prepared by the new process on the rat's trigeminal neuralgia model caused by infraorbital injection of Talci Pulvis, evaluate its potential clinical application value, and compare the therapeutic effect with that of Cranial Painkiller granules, so as to provide data support for the application of the Cranial Painkiller pills' extract powder and precise treatment. MethodsThe rat's trigeminal neuralgia model was constructed by infraorbital injection of Talci Pulvis, and the rats were randomly divided into the normal group, model group, carbamazepine group (60 mg·kg-1), Cranial Painkiller granules group (2.70 g·kg-1), and low, medium, and high dosage groups of Cranial Painkiller pills' extract powder (1.35, 2.70, 5.40 g·kg-1) according to the basal mechanical pain thresholds, and there were 10 rats in each group. The drug was administered by gavage to each group 2 h after modeling, and distilled water was given by gavage to the normal and model groups under the same conditions once a day for 10 d. Von Frey brushes were used to measure mechanical pain thresholds in rats. Hematoxylin-eosin (HE) staining was used to detect pathological changes in the trigeminal ganglion, and enzyme-linked immunosorbent assay (ELISA) was used to detect the inflammatory factors interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) levels in rat serum, as well as neuropeptide substance P (SP) and β-endorphin (β-EP) levels in rat brain tissue. Western blot technique was used to detect the levels of NLRP3, ASC, Caspase-1, and OTULIN proteins in rat brain tissue. ResultsCompared with the normal group, the pain threshold of rats in the model group showed a continuous significant decrease (P<0.01). The pathological damage of brain tissue was significant (P<0.01), and the inflammatory levels of IL-1, IL-6, IL-8, and TNF-α in serum were significantly elevated (P<0.01). The level of the SP in the brain tissue was significantly elevated (P<0.01), and the level of β-EP was significantly reduced (P<0.01), while the level of OTULIN was significantly reduced, and NLRP3, ASC, and Caspase-1 protein levels were significantly elevated (P<0.01). After administration of the drug, compared with the model group, the pain threshold of each dose group of the Cranial Painkiller pills' extract powder and the Cranial Painkiller granules group significantly increased (P<0.01). The inflammatory levels of IL-1, IL-6, IL-8, and TNF-α and SP levels significantly decreased (P<0.01), and the β-EP levels were significantly elevated (P<0.01), while the levels of OTULIN protein were significantly elevated (P<0.05, P<0.01), and the levels of NLRP3, ASC proteins were decreased (P<0.01)in high dose Cranial Painkiller pills' extract powder. Meanwhile, compared with those in the model group, the trigeminal ganglion lesions of rats in the Cranial Painkiller pills' extract powder and Cranial Painkiller granules groups showed different degrees of improvement (P<0.05, P<0.01). ConclusionThe Cranial Painkiller pills' extract powder has significant therapeutic effects on the rat model of trigeminal neuralgia induced by infraorbital injection of Talci Pulvis, and its mechanism is related to the improvement of OTULIN-regulated neuroinflammation. 
		                        		
		                        		
		                        		
		                        	
3.Therapeutic Effect of Cranial Painkiller Pills' Extract Powder in Treatment of Trigeminal Neuralgia Induced by Injection of Talci Pulvis into Infraorbital Foramen of Model Rats Based on OTULIN-regulated Neuroinflammation
Shuran LI ; Xinwei WANG ; Jing SUN ; Dan XIE ; Ronghua ZHAO ; Lei BAO ; Zihan GENG ; Qiyue SUN ; Jingsheng ZHANG ; Yaxin WANG ; Xihe CUI ; Xinying LI ; Bing HAN ; Tianjiao LU ; Xiaolan CUI ; Liying LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):21-28
		                        		
		                        			
		                        			ObjectiveThis paper aims to verify the therapeutic effect of Cranial Painkiller pills' extract powder prepared by the new process on the rat's trigeminal neuralgia model caused by infraorbital injection of Talci Pulvis, evaluate its potential clinical application value, and compare the therapeutic effect with that of Cranial Painkiller granules, so as to provide data support for the application of the Cranial Painkiller pills' extract powder and precise treatment. MethodsThe rat's trigeminal neuralgia model was constructed by infraorbital injection of Talci Pulvis, and the rats were randomly divided into the normal group, model group, carbamazepine group (60 mg·kg-1), Cranial Painkiller granules group (2.70 g·kg-1), and low, medium, and high dosage groups of Cranial Painkiller pills' extract powder (1.35, 2.70, 5.40 g·kg-1) according to the basal mechanical pain thresholds, and there were 10 rats in each group. The drug was administered by gavage to each group 2 h after modeling, and distilled water was given by gavage to the normal and model groups under the same conditions once a day for 10 d. Von Frey brushes were used to measure mechanical pain thresholds in rats. Hematoxylin-eosin (HE) staining was used to detect pathological changes in the trigeminal ganglion, and enzyme-linked immunosorbent assay (ELISA) was used to detect the inflammatory factors interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) levels in rat serum, as well as neuropeptide substance P (SP) and β-endorphin (β-EP) levels in rat brain tissue. Western blot technique was used to detect the levels of NLRP3, ASC, Caspase-1, and OTULIN proteins in rat brain tissue. ResultsCompared with the normal group, the pain threshold of rats in the model group showed a continuous significant decrease (P<0.01). The pathological damage of brain tissue was significant (P<0.01), and the inflammatory levels of IL-1, IL-6, IL-8, and TNF-α in serum were significantly elevated (P<0.01). The level of the SP in the brain tissue was significantly elevated (P<0.01), and the level of β-EP was significantly reduced (P<0.01), while the level of OTULIN was significantly reduced, and NLRP3, ASC, and Caspase-1 protein levels were significantly elevated (P<0.01). After administration of the drug, compared with the model group, the pain threshold of each dose group of the Cranial Painkiller pills' extract powder and the Cranial Painkiller granules group significantly increased (P<0.01). The inflammatory levels of IL-1, IL-6, IL-8, and TNF-α and SP levels significantly decreased (P<0.01), and the β-EP levels were significantly elevated (P<0.01), while the levels of OTULIN protein were significantly elevated (P<0.05, P<0.01), and the levels of NLRP3, ASC proteins were decreased (P<0.01)in high dose Cranial Painkiller pills' extract powder. Meanwhile, compared with those in the model group, the trigeminal ganglion lesions of rats in the Cranial Painkiller pills' extract powder and Cranial Painkiller granules groups showed different degrees of improvement (P<0.05, P<0.01). ConclusionThe Cranial Painkiller pills' extract powder has significant therapeutic effects on the rat model of trigeminal neuralgia induced by infraorbital injection of Talci Pulvis, and its mechanism is related to the improvement of OTULIN-regulated neuroinflammation. 
		                        		
		                        		
		                        		
		                        	
4.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
		                        		
		                        			
		                        			 With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections. 
		                        		
		                        		
		                        		
		                        	
5.Environmental contamination status of norovirus outbreaks in schools and nurseries in Linhai City
ZHENG Jianjun, WANG Xi,HONG Danyang, LI Yaling, XU Qiumeng, ZHANG Huili, HAN Qian, LU Da, ZHENG Qiao
Chinese Journal of School Health 2025;46(4):601-603
		                        		
		                        			Objective:
		                        			To investigate the environmental contamination of norovirus in nurseries and primary/secondary schools, so as to provide a scientific basis for effective prevention and control measures.
		                        		
		                        			Methods:
		                        			A total of 483 external environmental samples were collected from 34 cluster outbreaks of norovirus gastroenteritis in kindergartens and primary/secondary schools in Linhai City from 2021 to 2024. Pathogen detection was conducted using a rapid nucleic acid extraction kit and realtime fluorescence RT-PCR, and the results were analyzed using the χ2 test or Fishers exact test.
		                        		
		                        			Results:
		                        			Among the collected external environmental samples, the total positive rate of surface contamination was 13.66%. The positive rates in kindergartens and primary/secondary schools were 12.20% and 15.82%, respectively. In kindergartens, the five surfaces with the highest detection rates were desks/chairs (23.33%), toilet stool troughs (20.69%), urinal troughs (12.00%), washbasins/sinks (11.11%), and toilet mops (9.38%). In primary/secondary schools, the top five were toilet stool troughs (38.30%), urinal troughs (23.53%), toilet door handles (13.04%), toilet mops (12.50%), and drinking cups (11.11%). The difference in positive detection rates among different external environments in primary/secondary schools was statistically significant (Fishers exact probability test, P<0.01). The positive detection rate in sanitary toilets was higher than that in classroom environments (χ2=17.38), while the positive detection rate in classroom environments of kindergartens was higher than that in primary/secondary schools (χ2=5.42)(P<0.05).
		                        		
		                        			Conclusions
		                        			Norovirus exhibits a high contamination rate in nurseries and schools, particularly in restroom areas. Strengthening sanitation and disinfection in highrisk environments, and improving hygiene awareness among children and staff, are essential for the effective prevent and control of norovirus.
		                        		
		                        		
		                        		
		                        	
6.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
		                        		
		                        			 Objective:
		                        			Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity. 
		                        		
		                        			Materials and Methods:
		                        			This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC). 
		                        		
		                        			Results:
		                        			The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85. 
		                        		
		                        			Conclusion
		                        			Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification. 
		                        		
		                        		
		                        		
		                        	
7.Update on the treatment navigation for functional cure of chronic hepatitis B: Expert consensus 2.0
Di WU ; Jia-Horng KAO ; Teerha PIRATVISUTH ; Xiaojing WANG ; Patrick T.F. KENNEDY ; Motoyuki OTSUKA ; Sang Hoon AHN ; Yasuhito TANAKA ; Guiqiang WANG ; Zhenghong YUAN ; Wenhui LI ; Young-Suk LIM ; Junqi NIU ; Fengmin LU ; Wenhong ZHANG ; Zhiliang GAO ; Apichat KAEWDECH ; Meifang HAN ; Weiming YAN ; Hong REN ; Peng HU ; Sainan SHU ; Paul Yien KWO ; Fu-sheng WANG ; Man-Fung YUEN ; Qin NING
Clinical and Molecular Hepatology 2025;31(Suppl):S134-S164
		                        		
		                        			
		                        			 As new evidence emerges, treatment strategies toward the functional cure of chronic hepatitis B are evolving. In 2019, a panel of national hepatologists published a Consensus Statement on the functional cure of chronic hepatitis B. Currently, an international group of hepatologists has been assembled to evaluate research since the publication of the original consensus, and to collaboratively develop the updated statements. The 2.0 Consensus was aimed to update the original consensus with the latest available studies, and provide a comprehensive overview of the current relevant scientific literatures regarding functional cure of hepatitis B, with a particular focus on issues that are not yet fully clarified. These cover the definition of functional cure of hepatitis B, its mechanisms and barriers, the effective strategies and treatment roadmap to achieve this endpoint, in particular new surrogate biomarkers used to measure efficacy or to predict response, and the appropriate approach to pursuing a functional cure in special populations, the development of emerging antivirals and immunomodulators with potential for curing hepatitis B. The statements are primarily intended to offer international guidance for clinicians in their practice to enhance the functional cure rate of chronic hepatitis B. 
		                        		
		                        		
		                        		
		                        	
8.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
		                        		
		                        			 Objective:
		                        			Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity. 
		                        		
		                        			Materials and Methods:
		                        			This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC). 
		                        		
		                        			Results:
		                        			The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85. 
		                        		
		                        			Conclusion
		                        			Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification. 
		                        		
		                        		
		                        		
		                        	
9.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
		                        		
		                        			 Objective:
		                        			Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity. 
		                        		
		                        			Materials and Methods:
		                        			This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC). 
		                        		
		                        			Results:
		                        			The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85. 
		                        		
		                        			Conclusion
		                        			Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification. 
		                        		
		                        		
		                        		
		                        	
10.Update on the treatment navigation for functional cure of chronic hepatitis B: Expert consensus 2.0
Di WU ; Jia-Horng KAO ; Teerha PIRATVISUTH ; Xiaojing WANG ; Patrick T.F. KENNEDY ; Motoyuki OTSUKA ; Sang Hoon AHN ; Yasuhito TANAKA ; Guiqiang WANG ; Zhenghong YUAN ; Wenhui LI ; Young-Suk LIM ; Junqi NIU ; Fengmin LU ; Wenhong ZHANG ; Zhiliang GAO ; Apichat KAEWDECH ; Meifang HAN ; Weiming YAN ; Hong REN ; Peng HU ; Sainan SHU ; Paul Yien KWO ; Fu-sheng WANG ; Man-Fung YUEN ; Qin NING
Clinical and Molecular Hepatology 2025;31(Suppl):S134-S164
		                        		
		                        			
		                        			 As new evidence emerges, treatment strategies toward the functional cure of chronic hepatitis B are evolving. In 2019, a panel of national hepatologists published a Consensus Statement on the functional cure of chronic hepatitis B. Currently, an international group of hepatologists has been assembled to evaluate research since the publication of the original consensus, and to collaboratively develop the updated statements. The 2.0 Consensus was aimed to update the original consensus with the latest available studies, and provide a comprehensive overview of the current relevant scientific literatures regarding functional cure of hepatitis B, with a particular focus on issues that are not yet fully clarified. These cover the definition of functional cure of hepatitis B, its mechanisms and barriers, the effective strategies and treatment roadmap to achieve this endpoint, in particular new surrogate biomarkers used to measure efficacy or to predict response, and the appropriate approach to pursuing a functional cure in special populations, the development of emerging antivirals and immunomodulators with potential for curing hepatitis B. The statements are primarily intended to offer international guidance for clinicians in their practice to enhance the functional cure rate of chronic hepatitis B. 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail