1.Practice and evaluation of pharmacists’participation in long-term MTM models for stroke patients based on family doctor system
Lu SHI ; Chun LIU ; Lian TANG ; Jingjing LI ; Sudong XUE ; Yanxia YU ; Wenwen LI ; Keren YU ; Jianhui XUE ; Wen MA ; Hongzhi XUE
China Pharmacy 2025;36(9):1129-1134
OBJECTIVE To investigate the clinical efficacy of integrating pharmacists into family health teams (FHTs) for long-term medication therapeutical management (MTM) in stroke patients, and empirically evaluate the service model. METHODS A pharmacist team, jointly established by clinical and community pharmacists from the Affiliated Suzhou Hospital of Nanjing Medical University (hereinafter referred to as “our hospital”), developed a pharmacist-supported MTM model integrated into FHTs. Using a prospective randomized controlled design, 170 stroke patients discharged from our hospital (July 2022-December 2023) and enrolled in FHTs at Suzhou Runda Community Hospital were randomly divided into trial group (88 cases) and control group (82 cases) according to random number table. The control group received routine FHTs care (without pharmacist involvement in the team collaboration), while the trial group xhz8405@126.com received 12-month MTM services supported by pharmacists via an information platform. These services specifically included innovative interventions such as personalized medication regimen optimization based on the MTM framework, dynamic medication adherence management, medication safety monitoring, a home medication assessment system, and distinctive service offerings. Outcomes of the 2 grousp were compared before and after intervention, involving medication adherence (adherence rate, adherence score), compliance rates for stroke recurrence risk factors [blood pressure, low-density lipoprotein cholesterol (LDL-C)], and incidence of adverse drug reactions (ADR). RESULTS After 12 months, the trial group exhibited significantly higher medication adherence rates, improved adherence scores, higher compliance rates for blood pressure and LDL-C targets compared to the control group (P<0.05). The incidence of ADR in the trial group (4.55%) was significantly lower than that in the control group (8.11%), though the difference was not statistically significant (P> 0.05). CONCLUSIONS Pharmacist involvement in FHTs to deliver MTM services significantly enhances medication adherence and optimizes risk factor for stroke recurrence, offering practical evidence for advancing pharmaceutical care in chronic disease management under the family doctor system.
2.Mitochondrial Quality Control Affects Diabetic Cardiomyopathy:Based on Theory of Qi Deficiency and Stagnation
Aolin LI ; Lu LIAN ; Xinnong CHEN ; Yingyu XIE ; Zhipeng YAN ; Wenhui CAI ; QianQian ZHANG ; Chi ZHANG ; Junping ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(8):197-205
With the increasing incidence of diabetes mellitus in recent years, cardiomyopathy caused by diabetes mellitus has aroused wide concern and this disease is characterized by high insidiousness and high mortality. The early pathological changes of diabetic cardiomyopathy (DCM) are mitochondrial structural disorders and loss of myocardial metabolic flexibility. The turbulence of mitochondrial quality control (MQC) is a key mechanism leading to the accumulation of damaged mitochondria and loss of myocardial metabolic flexibility, which, together with elevated levels of oxidative stress and inflammation, trigger changes in myocardial structure and function. Qi deficiency and stagnation is caused by the loss of healthy Qi, and the dysfunction of Qi transformation results in the accumulation of pathogenic Qi, which further triggers injuries. According to the theory of traditional Chinese medicine (TCM), DCM is rooted in Qi deficiency of the heart, spleen, and kidney. The dysfunction of Qi transformation leads to the generation and lingering of turbidity, stasis, and toxin in the nutrient-blood and vessels, ultimately damaging the heart. Therefore, Qi deficiency and stagnation is the basic pathologic mechanism of DCM. Mitochondria, similar to Qi in substance and function, are one of the microscopic manifestations of Qi. The role of MQC is consistent with the defense function of Qi. In the case of MQC turbulence, mitochondrial structure and function are impaired. As a result, Qi deficiency gradually emerges and triggers pathological changes, which make it difficult to remove the stagnant pathogenic factor and aggravates the MQC turbulence. Ultimately, DCM occurs. Targeting MQC to treat DCM has become the focus of current research, and TCM has the advantages of acting on multiple targets and pathways. According to the pathogenesis of Qi deficiency and stagnation in DCM and the modern medical understanding of MQC, the treatment should follow the principles of invigorating healthy Qi, tonifying deficiency, and regulating Qi movement. This paper aims to provide ideas for formulating prescriptions and clinical references for the TCM treatment of DCM by targeting MQC.
3.Analysis of factors influencing elevated blood pressure and overweight/obesity and their comorbidities among Tibetan middle school students in Lhasa City
Chinese Journal of School Health 2024;45(3):423-426
Objective:
To explore the prevalence of elevated blood pressure and overweight/obesity and their comorbidities among Tibetan middle school students in Lhasa, and to analyze their association with lifestyle and other factors, so as to provide a basis for the intervention measures targeting elevated blood pressure, overweight and obesity among middle school students in high altitude area.
Methods:
Using a stratified cluster random sampling method in September 2021, a total of 1 488 Tibetan junior and high students from Lhasa City were investigated with blood pressure measurement, physical examination and questionnaire survey. The influencing factors of elevated blood pressure, overweight and obesity and their comorbidities association were analyzed by multivariate Logistic regression.
Results:
The prevalence of elevated blood pressure, overweight/obesity and their comorbidities were 17.8%, 17.4% , 5.0% respectively. Multivariate Logistic regression analysis showed that age( OR =0.81), residence, body mass inex(BMI) and gender were the influencing factors of elevated blood pressure; and the risks of elevated blood pressure in female students were higher than male students ( OR =1.89), suburban students were higher than urban students ( OR =8.06), overweight and obesity groups were higher than normal groups ( OR =2.55, 2.87) ( P <0.05). Adjusting for confounding factors such as gender, residence and school, and BMI (only for elevated blood pressure), daily screen time ≥2 h was positively correlated with elevated blood pressure, overweight/obesity and its comorbidities ( OR =1.56, 1.59 , 2.51) ( P <0.05).
Conclusions
The prevalence of elevated blood pressure, overweight/obesity are relatively high in Lhasa. Longer screen time is a common factor affecting with elevated blood pressure, overweight/obesity and comorbidities among Tibetan students. Measures should be taken intervene in the lifestyle of Tibetan students, in order to reduce elevated blood pressure and overweight/obesity.
4.Transcriptional differential analysis of ocular surface ectoderm and surface ectoderm
Lu SUN ; Canwei ZHANG ; Yuwen SONG ; Jianxin LI ; Lian DUAN ; Yang GAO ; Yuemei XIE ; Luping WANG ; Guangfu DANG
International Eye Science 2024;24(5):677-685
AIM:To identify transcriptional differences between the ocular surface ectoderm(OSE)and surface ectoderm(SE)using RNA-seq, and elucidate the OSE transcriptome landscape and the regulatory networks involved in its development.METHODS:OSE and SE cells were differentiated from human embryonic stem(hES)cells. Differentially expressed genes(DEGs)between OSE and SE were analyzed using RNA-seq. Based on the DEGs, we performed gene ontology(GO)analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis, and protein-protein interaction(PPI)network analysis. Transcription factors(TFs)and hub genes were screened. Subsequently, TF-gene and TF-miRNA regulatory networks were constructed using the NetworkAnalyst platform.RESULTS:A total of 4 182 DEGs were detected between OSE and SE cells, with 2 771 up-regulated and 1 411 down-regulated genes in OSE cells. GO-BP analysis revealed that up-regulated genes in OSE were enriched in the regulation of ion transmembrane transport, axon development, and modulation of chemical synaptic transmission. Down-regulated genes were primarily involved in nuclear division, chromosome segregation, and regulation of cell cycle phase transition. KEGG analysis indicated that up-regulated genes in OSE cells were enriched in signaling pathways such as cocaine addiction, axon guidance, and amphetamine addiction, while down-regulated genes were enriched in proteoglycans in cancer, ECM-receptor interaction, protein digestion and absorption, and cytokine-cytokine receptor interaction. Additionally, compared with SE, 204 TFs(including FOS, EGR1, POU5F1, SOX2, and PAX6)were up-regulated, and 80 TFs(including HAND2, HOXB6, HOXB5, HOXA5, and HOXB8)were down-regulated in OSE cells. Furthermore, we identified 6 up-regulated and 9 down-regulated hub genes in OSE cells, and constructed TF-gene and TF-miRNA regulatory networks based on these hub genes.CONCLUSIONS:The transcriptome characteristics of OSE and SE cells were elucidated through RNA-seq analysis. These findings may provide a novel insight for studies on the development and in vitro directed induction of OSE and corneal epithelial cells.
5.Research progress and existing problems in the industrialization of stem cell drugs
Xiao LU ; Xingru WANG ; Xueyong QI ; Lianming LIAO ; Yunfei LIAN
Journal of China Pharmaceutical University 2024;55(2):270-280
Abstract: Stem cells, which are a type of primitive cells with multipotent differentiation potential and self-renewal ability, have the potential to regenerate various tissues and organs. Stem cell drug development is a frontier research field in life sciences. Extensive clinical trials involving stem cells have been conducted for different complicated diseases. Some stem cells have been approved as drugs for some indications, indicating their broad industrial prospects. This review introduces the progress of stem cell drugs around the world, especially in China, and discusses the main problems in the industrialization of stem cell drugs, such as their effectiveness, quality control and safety, so as to provide some reference and insight for the development and rapid industrialization of stem cell drugs.
6.Efficacy and safety of nicorandil and ticagrelor de-escalation after percutaneous coronary intervention for elderly patients with acute coronary syndrome
Xiang SHAO ; Ning BIAN ; Hong-Yan WANG ; Hai-Tao TIAN ; Can HUA ; Chao-Lian WU ; Bei-Xing ZHU ; Rui CHEN ; Jun-Xia LI ; Tian-Chang LI ; Lu MA
Medical Journal of Chinese People's Liberation Army 2024;49(1):75-81
Objective To explore the efficacy and safety of ticagrelor de-escalation and nicorandil therapy in elderly patients with acute coronary syndrome(ACS)after percutaneous coronary intervention(PCI).Methods A total of 300 elderly patients with ACS were selected from the Sixth and Seventh Medical Center of Chinese PLA General Hospital and Beijing Chaoyang Integrative Medicine Emergency Rescue and First Aid Hospital from November 2016 to June 2019,including 153 males and 147 females,aged>65 years old.All the patients received PCI,and all had double antiplatelet therapy(DAPT)scores≥2 and a new DAPT(PRECISE-DAPT)score of≥25.All patients were divided into two groups by random number table method before operation:ticagrelor group(n=146,ticagrelor 180 mg load dose followed by PCI,and ticagrelor 90 mg bid after surgery)and ticagrelor de-escalation + nicorandil group(n=154,ticagrelor 180 mg load dose followed by PCI,ticagrelor 90 mg bid+nicorandil 5 mg tid after surgery,changed to ticagrelor 60 mg bid+ nicorandil 5 mg tid 6 months later).Follow-up was 12 months.The composite end points of cardiovascular death,myocardial infarction and stroke,the composite end points of mild hemorrhage,minor hemorrhage,other major hemorrhage and major fatal/life-threatening hemorrhage as defined by the PLATO study,and the composite end points of cardiovascular death,myocardial infarction,stroke and bleeding within 12 months in the two groups were observed.Results The comparison of general baseline data between the two groups showed no statistically significant difference(P>0.05).There was also no significant difference in the composite end points of cardiovascular death,myocardial infarction and stroke between the two groups(P>0.05).The cumulative incidence of bleeding events in ticagrelor de-escalation + nicorandil group was significantly lower than that in ticagrelor group(P<0.05),while the composite end points of cardiovascular death,myocardial infarction,stroke and bleeding were also significantly lower than those in tecagrelor group(P<0.05).Conclusion In elderly patients with ACS,the treatment of ticagrelor de-escalation + nicorandil after PCI may not increase the incidence of ischemic events such as cardiovascular death,myocardial infarction or stroke,and it may reduce the incidence of hemorrhagic events.
7.Biosynthesis and Application of Sugar Nucleotides
Meng HAO ; Jia-Qi LIAN ; Cui-Lu ZHANG ; Wan-Yi GUAN
Progress in Biochemistry and Biophysics 2024;51(4):822-838
Glycosylation is one of the most important reactions in living organisms as it results in the formation of glycoconjugates with diverse biological functions. Sugar nucleotides are structurally composed of sugar and nucleoside diphosphate or monophosphate, which are widespread within a variety of biological cells. As glycosyl donors for the transglycosyl reactions catalyzed by Leloir-type glycosyltransferases, sugar nucleotides are essential for the synthesis of glycans and glycoconjugates. However, high costs and limited availability of nucleotide sugars prevent applications of biocatalytic cascades on an industrial scale. Therefore, attentions on synthetic strategies of sugar nucleotides have been increasing to achieve their wide applications in various fields. The 9 common sugar nucleotides in mammals have been fully studied with large-scale synthesis through chemical, enzymatic (chemo-enzymatic) and cell factory strategies. In addition to common sugar nucleotides, many rare sugar nucleotides are present in plants and bacteria. Although unnatural sugar nucleotides cannot be synthesized in organisms, they have great potential in research as substrates for glycosyltransferases in carbohydrate synthesis, as enzyme inhibitors in biochemical studies, and as components of glycoconjugate biosynthesis. Therefore, increasing attention has been paid to explore the efficient synthesis of unnatural sugar nucleotides. Currently, strategies for chemical synthesis of sugar nucleotides have been greatly improved, such as the use of effective catalysts for forming pyrophosphate bonds and the development of entirely new synthesis protocols. Multiple sugar nucleotides, especially unnatural sugar nucleotides, are synthesized chemically. However, chemical synthesis requires tedious protection and deprotection steps, resulting in complex steps, high cost and low yield. In contrast, enzymatic (chemo-enzymatic) and cell factory methods have significant advantages such as high yield, easy operation and easy process scale-up in the preparation of sugar nucleotides. Hence, they are prominent strategies for sugar nucleotide preparation. Herein, the biosynthesis and application of sugar nucleotides are reviewed, mainly focusing on the 9 sugar nucleotides common in mammals. The early strategies for enzymatic synthesis of sugar nucleotides generally used de novo synthesis pathway. With the discoveries of enzymes involved in salvage pathway of sugar nucleotide synthesis and the development of one-pot multienzyme (OPME) method, the synthesis of sugar nucleotides was greatly simplified. Cell factory method employs the microbial living cells as a “processing plant” by engineering their metabolic pathways through genetic engineering technology. The cell factory method has high yield, and has been applied for efficient synthesis of several sugar nucleotides. Moreover, the strategy of gram-scale synthesis of multiple rare sugar nucleotides by cascade reactions from common sugar nucleotides using sugar nucleotides synthases cloned from different sources was illustrated. In recent years, the synthesis cost of sugar nucleotides has been further reduced through various ways, such as regeneration of nucleotides, regeneration of organic cofactors, and application of immobilized enzyme technology. Furthermore, through the continuous improvement of sugar nucleotide purification process, the use of high concentration of multi-enzyme cascade and rapid non-chromatographic purification process, the synthesis of multiple sugar nucleotides and their derivatives from monosaccharides was achieved, which gradually broke the limitations of the existing strategy. With the efficient synthesis of sugar nucleotides, their applications in various fields have been increasingly explored, including the synthesis of glycans and glycoconjugates, biochemical characterization of glycosyltransferases and bioorthogonal labeling strategies, which are of great significance to the research of biochemistry, glycobiology and the development of related pharmaceutical products.
8.ZHANG Junping's Experience in Treating Coronary Heart Disease Complicated with Hypothyroidism with Four Methods of Warming Yang
Aolin LI ; Lu LIAN ; Xinnong CHEN ; Zhipeng YAN ;
Journal of Traditional Chinese Medicine 2024;65(3):245-250
This paper summarized Professor ZHANG Junping's clinical experience in treating coronary heart disease (CHD) combined with hypothyroidism. It is believed that yang deficiency was the root cause of CHD complicated with hypothyroidism, and also the key pathogenesis throughout its development. Accordingly, combined with the different focuses on the lesions in the blood, pulse, heart and spirit, Professor ZHANG took warming yang as the basic rule and summarized the four methods of warming yang for syndrome differentiation and treatment. When spleen-kidney yang deficiency, disturbance of qi transformation, dysfunction of blood transportation as the pathological basis of CHD combined with hypothyroidism, the self-prescribed Butian Formula (补天方) could be used for warming yang and benefiting the kidney, thereby regulating Qi and blood; when the cold and dampness blocked the blood vessels, and turbidity-toxin generated gradually, resulting in heart vessel obstruction, the self-prescribed Huazhuo Changmai Decoction (化浊畅脉汤) could be used to warm yang and dissolve the turbidity so that to unblock the heart vessels; when the structure and function of the heart fail, edema due to yang deficiency with pericardial fluid retention, the self-prescribed Yuxin Baomai Formula (育心保脉方) could be used to warm yang and excret water, and protect the heart; when yang deficiency led to emotional and mental stagnation, and the heart impairment aggravated emotional and mental disorders, which resulted in emotional and mental abnormalities, the self-prescribed Jieyu Anshen Decoction (解郁安神汤) could be used to relieve emotional and mental stagnation, and calm mind.
9.MiR-31a-5p aggravates apoptosis in myocardial ischemia by targeting HIF-1α
Kongli LU ; Xueqing LI ; Ling DU ; Song XUE ; Feng LIAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(05):782-790
Objective To investigate the expression of miR-31a-5p in myocardial infarction (MI) mice and its potential mechanism. Methods A dataset was downloaded from the gene expression database, and miR-31a-5p and its predicted target gene hypoxia-inducible factor-1α (HIF-1α) were screened using bioinformatics methods. The MI model was established by ligating the left anterior descending branch of the coronary artery in C57BL/6J male mice which were randomly divided into sham and MI groups (n=6 in each group). The in vitro hypoxic cell model was induced by treatment of H9c2 cells with cobalt chloride (CoCl2) and divided into a control group, a model group, a NC group, a miR-31a-5p mimic group and a miR-31a-5p inhibitor group. The degree of myocardial tissue fibrosis was stained by Masson and analyzed. The expression levels of miR-31a-5p and HIF-1α mRNA in mouse myocardial tissues and H9c2 cells were detected by qRT-PCR. Western blotting was used to detect the expression levels of B-cell lymphoma 2 (Bcl-2), cleaved-caspase 3 apoptotic protein in mouse myocardial tissues and HIF-1α and apoptotic protein in H9c2 cells, respectively. The dual luciferase reporter gene assay was used to verify the targeting relationship between miR-31a-5p and HIF-1α. Results Masson staining showed significantly increased fibrosis in MI mice (P<0.000 1); miR-31a-5p, cleaved-caspase 3 were significantly elevated and Bcl-2 was decreased in MI mice and CoCl2 treated H9c2 (P<0.05). The results of dual luciferase reporter assay showed that the relative luciferase activity of miR-31a-5p mimic cotransfected with HIF-1α-3'-UTR WT plasmid was reduced (P<0.000 1); miR-31a-5p mimic decreased HIF-1α expression and increased apoptotic protein levels in CoCl2 induced H9c2 cells (both P<0.05), while miR-31a-5p exerted the opposite effect. Conclusion miR-31a-5p can aggravate apoptosis in myocardial ischemia by targeting HIF-1α.
10.Exploration of Clinical Thoughts for Treatment of Stable Angina with Insomnia under the Guidance of the "Blood-Pulse-Heart-Spirit"
Xinbiao FAN ; Zhipeng YAN ; Xiaofei GENG ; Lu LIAN ; Binbin DING ; Aolin LI ; Junping ZHANG
Journal of Traditional Chinese Medicine 2024;65(12):1240-1244
Guided by the concept of "blood-pulse-heart-spirit", it is believed that stable angina combined with insomnia is caused by disturbance of blood vessels, which leads to loss of nourishment for the heart body and heart spirit, so the core treatment principle is to regulate the blood vessels and calm the mind. At the beginning of the disease, it shows as the liver fails to govern the free flow of qi, and disorders qi and blood; during the progress of the disease, it shows as spleen deficiency and phlegm stagnation, phlegm and blood stasis obstructing the vessels; the central mechanism of the disease shows as disturbance of blood vessels and insufficient heart yin. For the pattern of liver depression and blood stasis, pattern of phlegm and blood stasis blocking the vessels, and pattern of heart yin deficiency, it is recommended to treat by Wuzang Shenning Formula (五脏神宁方) to dredge the liver and regulate the vessels, Banxia Houpo Decoction (半夏厚朴汤) plus Gualou Xiebai Banxia Decoction (瓜蒌薤白半夏汤) to dissolve phlegm and regulate the vessels, and Yunpi Tiaoxin Decoction (运脾调心汤) to nourish the yin and regulate the vessels. Throughout the treatment, pattern differentiation and treatment is accompanied by the method of calming the mind with heavy sedatives and nourishing the blood to calm the mind, so as to achieve the purpose of regulating mind and heart together and treating the body and spirit at the same time.


Result Analysis
Print
Save
E-mail