1.Therapeutic efficacy of intravenous immunoglobulin in ulcerative colitis
Qian LONG ; Zongkui WANG ; Changqing LI ; Rong ZHANG
Chinese Journal of Blood Transfusion 2025;38(4):522-530
[Objective] To explore the therapeutic effects of intravenous immunoglobulin (IVIG) on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC). [Methods] C57BL/6 mice were randomly assigned to the control group, the DSS group (model) and the DSS+IVIG group (treatment). The DSS group and the DSS+IVIG group received 3% DSS in drinking water to establish the acute UC mouse model. During the experiment, the DSS+IVIG group received IVIG (1 g/kg/2d) via tail vein injection, while the DSS group received equivalent saline via tail vein injection at the same dose and frequency. The symptoms of the mice were observed, body weight changes were recorded, and the disease activity index (DAI) was calculated daily. At the end of the experiment, hematoxylin-eosin (HE) staining was used to observe the pathological changes and inflammatory cell infiltration of colon tissue; Periodic acid-Schiff (PAS) staining was used to quantify the number of goblet cells; Luminex was used to detect the levels of inflammatory-related cytokines (such as TNF-α, IL-6 and MMPs) in colon; western blot and qRT-PCR were respectively used to detect the protein expression and mRNA levels of tight junction proteins (ZO-1, Occludin, Claudin-3). [Results] DSS induced weight loss, diarrhea, bloody stool, increased DAI score, and shortened colon length in mice. Compared with DSS group, after the administration of IVIG, the DAI score was significantly reduced (P<0.001), colon length was increased (P<0.001), infiltration of inflammatory cells and pathological damage were alleviated in colonic mucosa (P<0.001), the number of goblet cells were increased (P<0.05), and the levels of inflammatory-related cytokines TNF-α, IL-6, IL-6R, MMP2, MMP3 and Chitinase3like1 were decreased (all P<0.05). Western blot and qRT - PCR results showed that IVIG significantly up-regulated the protein expression of ZO-1, Occludin and claudin-3 (all P<0.05) and the mRNA levels of ZO-1 and Occludin (all P<0.05). [Conclusion] IVIG has protective effects on colitis by inhibiting the pathological release of inflammatory-related cytokines such as TNF-α, IL-6 and MMPs and restoring the integrity of intestinal barrier.
2.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
7.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
8.Mitochondial-located miRNAs in The Regulation of mtDNA Expression
Peng-Xiao WANG ; Le-Rong CHEN ; Zhen WANG ; Jian-Gang LONG ; Yun-Hua PENG
Progress in Biochemistry and Biophysics 2025;52(7):1649-1660
Mitochondria, functioning not only as the central hub of cellular energy metabolism but also as semi-autonomous organelles, orchestrate cellular fate decisions through their endogenous mitochondrial DNA (mtDNA), which encodes core components of the electron transport chain. Emerging research has identified microRNAs localized within mitochondria, termed mitochondria-located microRNAs (mitomiRs). Recent studies have revealed that mitomiRs are transcribed from nuclear DNA (nDNA), processed and matured in the cytoplasm, and subsequently transported into mitochondria. mitomiRs regulate mtDNA through diverse mechanisms, including modulation of mtDNA expression at the translational level and direct binding to mtDNA to influence transcription. Aberrant expression of mitomiRs leads to mitochondrial dysfunction and contributes to the pathogenesis of metabolic diseases. Restoring mitomiR expression to physiological levels using mitomiRs mimics or inhibitors has been shown to improve mitochondrial function and alleviate related diseases. Consequently, the regulatory mechanisms of mitomiRs have become a major focus in mitochondrial research. Given that mitomiRs are located in mitochondria, targeted delivery strategies designed for mtDNA can be adapted for the delivery of mitomiRs mimics or inhibitors. However, numerous intracellular and extracellular barriers remain, highlighting the need for more precise and efficient delivery systems in the future. The regulation of mtDNA expression mediated by mitomiRs not only expands our understanding of miRNA functions in post-transcriptional gene regulation but also provides promising molecular targets for the treatment of mitochondrial-related diseases. This review systematically summarizes recent research progress on mitomiRs in regulating mtDNA expression and discusses the underlying mechanisms of mitomiRs-mtDNA interactions. Additionally, it provides new perspectives on precision therapeutic strategies, with a particular emphasis on mitomiRs-based regulation of mitochondrial function in mitochondrial-related diseases.
9.Changes in pharmacokinetics of single dose of fentanyl in simulated high altitude in rats
Yukun REN ; Zhuo WANG ; Xudong XIAO ; Zonghong LONG ; Yu LI ; Qiuyue WANG ; Hong LI ; Jiaxing LIAO ; Rong ZHANG
Journal of Army Medical University 2024;46(7):732-737
Objective To explore the pharmacokinetic changes of single dose of fentanyl in rats in a simulated high-altitude and contributing factors.Methods Thirty-six healthy female SD rats(6~8 weeks old,250±20 g)were randomly divided into high-altitude-acute-exposure group(group A),high-altitude-chronic-exposure group(group S)and control group(group C)through random number table,with 12 rats in each group.The group A and S were housed in a low-pressure chamber simulating the high altitude of 5000 m above sea level for 3 and 30 d respectively,and the group C was housed out of the chamber(at an altitude of 300 m).A single dose of fentanyl was administered through the femoral vein to 6 rats randomly selected from each group.Liquid chromatography tandem mass spectrometry(LC-MS/MS)was used to detect blood concentrations of fentanyl and WinNonlin 8.2 software was used to calculate the pharmacokinetic parameters,while blood samples were taken through the femoral artery before and in 1,2,4,8,15,30,60,120 and 180 min after administration.The remaining 6 rats were ultrasonographically assessed for portal vein internal diameter(PVD),peak flow velocity(PVV)and blood flow(PVF),and liver tissues were collected for CYP3A1 protein content assay.Results The blood drug concentrations of fentanyl in the group A and group S were significantly lower than those in the group C at 60,120,and 180 min(P=0.002,P<0.001,P= 0.001).Compared with the group C,the clearance rate(CL)of the group A was increased by 54.06%(P=0.021),and the mean residence time(MRTlast)was shortened by 24.21%(P=0.033);CL of the group S was increased by 50.10%(P=0.041),the area under the concentration-time curve(AUC0-t,AUC0-∞)and MRTlast were reduced by 18.92%(P=0.039),27.54%(P=0.018)and 33.61%(P= 0.004),respectively.PVD and PVF in the group S increased by 10.87%(P=0.006)and 42.50%(P= 0.006)when compared with the group C.The CYP3A1 protein content in the group A was 28.74%,which was higher than that in the group C(P=0.048).Conclusion Fentanyl is cleared significantly faster after a single dose in rats in simulated high-altitude,which may be related to the increased liver blood flow and increased CYP3A1 protein expression in liver.
10.Salvage radical surgery in early-stage colorectal cancer patients undergoing non-curative endoscopic resection
Shuo FENG ; Weidong DOU ; Yingchao WU ; Guowei CHEN ; Tao WU ; Yong JIANG ; Pengyuan WANG ; Jixin ZHANG ; Yunlong CAI ; Long RONG ; Junling ZHANG ; Xin WANG
Chinese Journal of General Surgery 2024;39(2):81-85
Objective:To evaluate whether additional radical surgery is necessary following non-curative endoscopic resection of early colorectal cancer.Method:Clinicopathological data in 104 patients following non-curative endoscopic resection of early colorectal coucer at the Department of General Surgery, Peking University First Hospital between Jan 2011 and Dec 2021.Results:Lymph node metastasis and/or residual cancer was found in 23 patients (22%), including 12 cases of lymph node metastasis, 7 cases of residual cancer and 4 patients with both residual cancer and lymph node metastasis. Univariate analysis indicated that vascular infiltration, positive vertical margin, and female gender were risk factors for lymph node metastasis. Risk factors for residual cancer were tumors ≥2 cm in size, negative lift sign, infiltration depth of ≥1 000 μm, and positive horizontal and vertical margins. Multivariate Logistic regression analysis revealed that vascular invasion, positive vertical margins, and being female were independent risk factors for lymph node metastasis, while positive vertical margins was independent risk factor for residual cancer. Salvage surgery lasted for a median of 184 (156-233) minutes, with an estimated blood loss of 50 (20-100) ml and an average postoperative hospital stay of 9 (8-11) days. Seven cases of Clavein-Dindo Ⅱ or higher complications were observed, including pulmonary embolism in 1 case , anastomotic leakage in one, lymphatic fistula in one, bowel obstruction in 2 cases and urinary tract infection in 2 cases.Conclusion:Salvage surgery is mandatory for early endoscopic non-curative resection of colorectal cancer.

Result Analysis
Print
Save
E-mail