1.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
2.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
3.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
4.Effect of ceria nanoparticles on activity of DSS-induced colitis in mice by eliminating active oxygen species
Yuhan LU ; Yahong SHI ; Manmei LONG ; Zi WANG ; Yingwei WU
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(1):35-42
Objective·To investigate the effect of ceria nanoparticles-polyethylene glycol(CeNP-PEG)on scavenging reactive oxygen species(ROS)and alleviating disease activity in dextran sulphate sodium(DSS)-induced colitis mice.Methods·CeNP was synthesized with the hydrates of cerium acetate,oleamine,and xylene,which was modified with polyethylene glycol-stearyl phosphatidylethanolamine(mPEG-DPSE)to obtain CeNP-PEG.Then CeNP-PEG was purified.The particle size and zeta potential of CeNP-PEG were measured by using transmission electron microscopy(TEM)and dynamic light scattering(DLS).Mouse macrophages(Raw264.7)were cultured in vitro and induced to a pro-inflammatory phenotype(M1 phenotype).M1 macrophages were treated with 0.5 μg/mL and 1.0 μg/mL CeNP-PEG,respectively,and then Western blotting was used to detect the expression changes of the proteins related with nuclear factor-κB(NF-κB)signaling pathway.DSS-induced colitis mice models were constructed,and CeNP-PEG(1.0 mg/mL)was intravenously administrated for 3 times via tail vein during the modeling period.Meanwhile,the body weight,fecal characteristics,and frequency of rectal bleeding in mice were monitored in the normal control group(Normal group),the model group(DSS group),and the CeNP-PEG treatment group.The disease activity index(DAI)was calculated to evaluate the intestinal inflammation.The level of ROS in mouse intestinal tissues was detected by dihydroethidine(DHE)staining and the mRNA expression levels of inflammatory cytokines interferon-γ(Ifn-γ),interleukin-6(Il-6),Il-1β and tumor necrosis factor-α(Tnf-α)were detected by real-time quantitative PCR(RT-qPCR).Results·The hydrated particle size of synthesized CeNP-PEG was(6.96±0.27)nm,and the average zeta potential was(-6.02±1.31)mV.Western blotting results showed that the expression of p-P65 increased in the pro-inflammatory macrophages compared with the control group.The expression of NF-κB inhibitor-α(IκB-α)decreased,and their expressions tended to recover after the intervention of different concentrations of CeNP-PEG.In the DSS-induced colitis models,mice in the CeNP-PEG treatment group lost less weight than those in the DSS group(P= 0.000)and had lower DAI scores(P=0.000).The RT-qPCR results of intestinal tissues showed that the mRNA levels of Ifn-γ,Il-1β,Il-6 and Tnf-α in the DSS group were significantly up-regulated compared with those in the Normal group(P=0.000),and all of them significantly decreased in the CeNP-PEG treatment group.The results of DHE staining showed that the fluorescence intensity of intestinal tissues in the DSS group was significantly enhanced than that in the Normal group,and the fluorescence intensity decreased in the CeNP-PEG treatment group.Conclusion·CeNP-PEG can inhibit the expression of intestinal inflammatory factors and the activation of NF-κB-related inflammatory pathway of pro-inflammatory macrophages,eliminate intestinal ROS,improve the intestinal inflammatory microenvironment,and alleviate the disease activity of DSS-induced colitis in mice.
5.Outcome analysis of functional mitral regurgitation after transcatheter aortic valve replacement in patients with severe bicuspid aortic stenosis
Da-Wei LIN ; Zi-Long WENG ; Feng ZHANG ; Wen-Zhi PAN ; Da-Xin ZHOU
Fudan University Journal of Medical Sciences 2024;51(1):34-40
Objective To explore the relationship between the types of bicuspid aortic valves(BAV)and the outcome of functional mitral regurgitation(FMR)and the affecting factors of FMR.Methods From Jun 2018 to Sep 2022,patients with severe BAV aortic valve stenosis(AS)complicated with FMR underwent post transcatheter aortic valve replacement(TAVR)in Zhongshan Hospital,Fudan University were retrospectively analyzed.The baseline information and imaging data of different BAV patients were collected.Logistic regression was used to analyze the factors affecting the outcome of FMR(improvement and non-improvement).Result A total of 100 patients with TAVR were included,including 49 patients with type 0 of BAV and 51 patients with type 1 of BAV.Compared with patients of type 1,patients of type 0 had younger age[(72.78±6.09)y vs.(77.00±8.35)y,P=0.050],lower male ratio(47%vs.73%,P= 0.009)higher BMI[(23.19±2.62)kg/m2 vs.(21.99±3.13)kg/m2,P=0.041],and lower incidence of aortic regurgitation(69%vs.92%,P=0.040).Compared with the non-improvement group,the improvement group had a lower incidence of coronary heart disease(5%vs.18%,P=0.042),higher incidence of pulmonary hypertension(20%vs.2%,P=0.007),larger left ventricular diastolic diameter[(51.98±6.74)mm vs.(48.04±7.72)mm,P=0.009]and higher maximum flow velocity[(4.86±0.95)cm/s vs.(4.47±0.75)cm/s,P= 0.023]of the aortic valve.The results of Logistic regression analysis showed that preoperative pulmonary hypertension,left ventricular end-diastolic diameter and maximum valvular flow velocity of BAV patients were the potential affecting factors of FMR improvement after TAVR.Conclusion No significant difference was found in FMR improvement between BAV patients of type 0 and type 1 after TAVR.For BAV patients with AS,preoperative pulmonary hypertension,larger left ventricular end-diastolic diameter,and faster aortic valve flow velocity were associated with higher FMR improvement rate.
6.In vitro study on the sealing effect of different shapes of cuff tracheal tubes under the lowest safe pressure
Chunyuan ZHAO ; Ling HUANG ; Zi WEI ; Long CHANG ; Jing LIN ; Chunfeng ZHOU
Chinese Critical Care Medicine 2024;36(1):28-32
Objective:To compare the effectiveness of cylindrical-shaped and conical-shaped cuff catheters for airway closure using different pressure measurement methods at the lowest safe pressure and to guide the clinical application.Methods:Twenty-four patients with endotracheal intubation admitted to the intensive care unit (ICU) of Guangxi Medical University Cancer Hospital from December 2021 to January 2022 were enrolled. Leakage test in vitro was performed on the secretion on the patients' cuff. The needle and plunger from 20 mL syringe was separated, the syringe was sealed with adhesive, and the syringe nozzle was filled thoroughly to create a tracheal model. Consecutively, both cylindrical-shaped and conical-shaped cuff catheters were inserted into the simulated trachea, and the cuff pressure was calibrated to 20 cmH 2O (1 cmH 2O≈0.098 kPa) before commencing the experiment. The viscosity of the secretion on the patients' cuff was classified (grade Ⅰ was watery subglottic secretion, grade Ⅱ was thick subglottic secretion, grade Ⅲ was gel-like subglottic secretion), and the same viscosity secretion was injected into the catheter cuff. Utilizing a self-control approach, intermittent pressure measurement was initially conducted on both the cylindrical-shaped and conical-shaped cuff by improved pressure measurement method (intermittent pressure measurement group), followed by continuous pressure measurement experiment (continuous pressure measurement group). The leakage volume of the three viscosity subglottic secretions and the values of cuff pressure measurement of different shaped cuff catheters at 4, 6, 8 hours of inflation were recorded. Results:A total of 180 retention samples were extracted from 24 patients with tracheal intubation during ventilation, with 90 samples in each of the two groups using different pressure measurement methods, and 30 samples of retention materials with different viscosities in each group. In the intermittent pressure measurement group, at 4 hours of inflation, all samples of secretion with grade Ⅰ and grade Ⅱ on cylindrical-shaped cuff leaked, while 3 samples of secretion with grade Ⅲ also leaked. For conical-shaped cuff, 28 samples of secretion with grade Ⅰ leaked, only 2 samples of secretion with grade Ⅱ leaked, and there was no leak for secretion with grade Ⅲ. At 6 hours of inflation, all samples of the three viscosity secretions on different shaped cuffs leaked. The leakage was gradually increased with the prolongation of inflation time. In the continuous pressure measurement group, at 4 hours of inflation, all samples of secretion with grade Ⅰ on cylindrical-shaped cuff leaked, while 29 samples of secretion with grade Ⅱ leaked, and there was no leak for secretion with grade Ⅲ. For the conical-shaped cuff, 26 samples of secretion with grade Ⅰ leaked, and there was no leak for secretion with grade Ⅱ and grade Ⅲ. At 6 hours of inflation, the conical-shaped cuff still had no leak for secretion with grade Ⅲ. As the inflation time prolonged, the leakage of subglottic secretion on different shaped cuffs in both groups was gradually increased. At 8 hours of inflation, all samples experienced leakage, but the leakage of subglottic secretion on different shaped cuffs in the continuous pressure measurement group was significantly reduced as compared with the intermittent pressure measurement group [leakage for secretion with grade Ⅲ (mL): 1.00 (0.00, 1.25) vs. 2.00 (1.00, 2.00) on the cylindrical-shaped cuff, 1.00 (0.00, 1.00) vs. 2.00 (2.00, 2.00) on the conical-shaped cuff, both P < 0.01]. The values of pressure measurement of cuffs with different shapes at different time points of inflation in the continuous pressure measurement group were within the set range (20-21 cmH 2O). The cuff pressure at 4 hours of inflation in the intermittent pressure measurement group was significantly lower than the initial value (cmH 2O: 18.3±0.6 vs. 20.0±0.0 in the cylindrical-shaped cuff, 18.4±0.6 vs. 20.0±0.0 in the conical-shaped cuff, both P < 0.01), and the cuff pressure in both shaped cuffs showed a significant decrease tendency as inflation time prolonged. However, there was no statistically significant difference in values of pressure measurement between the different shaped cuff catheters. Conclusions:Continuous pressure monitoring devices can maintain the effective sealing of conical-shaped cuff catheters at the lowest safe pressure. When using an improved pressure measurement method for intermittent pressure measurement and/or using a cylindrical cuff catheter, the target pressure should be set at 25-30 cmH 2O, and the cuff pressure should be adjusted regularly.
7.Nanozyme and Abiogenesis
Long MA ; Zi-Mo LIANG ; Yin-Yin HOU ; Jing FENG ; Ke-Long FAN ; Xi-Yun YAN
Progress in Biochemistry and Biophysics 2024;51(10):2274-2291
Nanozymes, a groundbreaking discovery by Chinese scientists, represent a novel and remarkable property of nanomaterials. They not only exhibit catalytic activity comparable to natural enzymes, but also boast exceptional stability, tunable reactivity, and the ability to catalyze reactions under mild conditions. The identification of nanozymes has unveiled the biocatalytic potential of inorganic nanomaterials. In parallel, inorganic minerals have long been regarded as pivotal catalysts in the origin of life, driving the synthesis of early biomolecules. These minerals not only facilitate redox reactions that convert simple inorganic compounds into organic molecules but also enable chiral selection, the synthesis of biomacromolecules, and radioprotective functions via their surface structures. Recent advances suggest that inorganic nanomaterials can delicately catalyze the formation of biomolecules, aid in macromolecular assembly, and provide radiation shielding. Furthermore, nanominerals are found in abundance across Earth and extraterrestrial environments. This paper seeks to explore the potential of nanozymes as catalytic agents in the processes that gave rise to life, integrating the catalytic roles of inorganic minerals with the unique attributes of nanozymes, which will provide a new perspective for research of origin of life.
8.Research progress on carrier-free and carrier-supported supramolecular nanosystems of traditional Chinese medicine anti-tumor star molecules
Zi-ye ZANG ; Yao-zhi ZHANG ; Yi-hang ZHAO ; Xin-ru TAN ; Ji-chang WEI ; An-qi XU ; Hong-fei DUAN ; Hong-yan ZHANG ; Peng-long WANG ; Xue-mei HUANG ; Hai-min LEI
Acta Pharmaceutica Sinica 2024;59(4):908-917
Anti-tumor traditional Chinese medicine has a long history of clinic application, in which the star molecules have always been the hotspot of modern drug research, but they are limited by the solubility, stability, targeting, bioactivity or toxicity of the monomer components of traditional Chinese medicine anti-tumor star molecules and other pharmacokinetic problems, which hinders the traditional Chinese medicine anti-tumor star molecules for further clinical translation and application. Currently, the nanosystems prepared by supramolecular technologies such as molecular self-assembly and nanomaterial encapsulation have broader application prospects in improving the anti-tumor effect of active components of traditional Chinese medicine, which has attracted extensive attention from scholars at home and abroad. In this paper, we systematically review the research progress in preparation of supramolecular nano-systems from anti-tumor star molecule of traditional Chinese medicine, and summarize the two major categories and ten small classes of carrier-free and carrier-based supramolecular nanosystems and their research cases, and the future development direction is put forward. The purpose of this paper is to provide reference for the research and clinical transformation of using supramolecular technology to improve the clinical application of anti-tumor star molecule of traditional Chinese medicine.
9.Cloning and interacted protein identification of AP1 homologous gene from Lonicera macranthoides
Ya-xin YU ; Li-jun LONG ; Chang-zhu LI ; Hui-jie ZENG ; Zhong-quan QIAO ; Si-si LIU ; Ying-zi MA
Acta Pharmaceutica Sinica 2024;59(10):2880-2888
The
10.Antimicrobial resistance and related risk factors of carbapenem-resistant Klebsiella pneumoniae isolated from blood
Pei-Juan TANG ; Peng-Wen OUYANG ; Sheng LONG ; Na PENG ; Zi-Han WANG ; Qiong LIU ; Wen XU ; Liang-Yi XIE
Chinese Journal of Infection Control 2024;23(1):49-57
Objective To explore the antimicrobial resistance of carbapenem-resistant Klebsiella pneumoniae(CRKP)isolated from blood and the related risk factors for infection in patients.Methods Clinical data of 383 KP-infected patients from whose blood Klebsiella pneumoniae(KP)were isolated during hospitalization period in a hos-pital from January 2018 to December 2021 were retrospectively analyzed.Patients were divided into CRKP group(n=114)and non-CRKP group(n=269)based on antimicrobial resistance.According to the prognosis,114 patients in the CRKP group were subdivided into the death group(n=30)and the survival group(n=84).General informa-tion,underlying diseases,antimicrobial use,and infection outcomes of two groups of patients were compared,and risk factors for infection and death after infection were analyzed.Results The resistance rates of KP to tigecycline and compound sulfamethoxazole showed upward trends,with statistically significant differences(both P=0.008).The CRKP group had higher resistance rates to amikacin,aztreonam,compound sulfamethoxazole,ciprofloxacin,cefepime,cefoperazone/sulbactam,piperacillin/tazobactam,tigecycline,ceftazidime,tobramycin,and levofloxacin,as well as higher in-hospital mortality than the non-CRKP group,with statistically significant differences(all P<0.05).Acute pancreatitis prior to infection(OR=16.564,P<0.001),hypoalbuminemia(OR=8.588,P<0.001),stay in in-tensive care unit prior to infection(OR=2.733,P=0.017),blood transfusion(OR=3.968,P=0.001),broncho-scopy(OR=5.194,P=0.014),surgery within 30 days prior to infection(OR=2.603,P=0.010),and treatment with carbapenems(OR=2.663,P=0.011)were independent risk factors for the development of CRKP blood-stream infection(BSI).Cardiac insufficiency before infection(OR=11.094,P=0.001),combined with pulmonary infection(OR=20.801,P=0.010),septic shock(OR=9.783,P=0.002),disturbance of consciousness(OR=11.648,P=0.001),and receiving glucocorticoid treatment(OR=5.333,P=0.018)were independent risk factors for mortality in patients with CRKP BSI.Conclusion The resistance rate of KP from BSI to tigecycline and com-pound sulfamethoxazole presents upward trend.Underlying diseases,invasive procedures,and carbapenem treat-ment are closely related to CRKP BSI.Cardiac insufficiency,pulmonary infection,septic shock,disturbance of con-sciousness,and glucocorticoid treatment can lead to death of patients with CRKP BSI.

Result Analysis
Print
Save
E-mail