1.Research advances in traditional Chinese medicine for the treatment of hepatocellular carcinoma by regulating immune cells
Lijuan LONG ; Zongyu WANG ; Yali ZHAO ; Chuanfu QIN ; Hua QIU
Journal of Clinical Hepatology 2025;41(2):349-358
Hepatocellular carcinoma (HCC) is a common malignant tumor with a high mortality rate, an insidious onset, and complex pathological mechanisms. In the tumor microenvironment, tumor-promoting immune cells protect tumor cells from immune attacks, while dysfunction of anti-tumor immune cells causes the inhibition of immune response, thereby leading to the continuous deterioration of cancer. In recent years, traditional Chinese medicine has shown good efficacy in the treatment of HCC, and it can inhibit the proliferation and metastasis of cancer cells by regulating immune cells. By analyzing related articles in China and globally, this article summarizes how immune cells affect the progression of HCC through the immunosuppressive pathway and how traditional Chinese medicine exerts an anti-HCC effect by regulating immune cells, in order to provide theoretical basis and reference for optimizing the treatment of HCC.
2.Randomized Double-blind Placebo-controlled Study on Clinical Efficacy and Mechanism of Shexiang Baoxinwan in Treating Stable Angina Pectoris Complicated with Anxiety and Depression in Coronary Artery Disease
Jie WANG ; Linzi LONG ; Zhiru ZHAO ; Feifei LIAO ; Jieming LU ; Tianjiao LIU ; Yuxuan PENG ; Hua QU ; Changgeng FU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):159-169
ObjectiveTo evaluate the efficacy of Shexiang Baoxinwan in treating stable angina pectoris with Qi stagnation and blood stasis syndrome in patients with coronary artery disease (CAD) complicated with anxiety and depression and explore its underlying mechanisms. MethodsThis study employed a randomized, double-blind, and placebo-controlled clinical trial design. Patients admitted to the hospital were randomly assigned to the observation group and the control group, with 52 patients in each group. Patients in the observation and control groups received Shexiang Baoxinwan and placebo, respectively, both in combination with conventional Western medication. The dose was 45.0 mg, three times daily, for a total duration of eight weeks. The primary outcome was the Seattle Angina Questionnaire (SAQ) scores before and after treatment. Secondary outcomes included changes in traditional Chinese medicine (TCM) syndrome score, the patient health questionnaire-9 (PHQ-9), generalized anxiety disorder-7 (GAD-7), inflammatory markers [interleukin-18 (IL-18), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), CD40, etc.], monoamine neurotransmitters [e.g., dopamine (DA)], vascular endothelial function markers [e.g., endothelin-1(ET-1)], adipokines, and ischemia-modified albumin (IMA). Adverse reactions were also recorded. ResultsA total of 92 patients completed the study, with 44 in the observation group and 48 in the control group. Compared with baseline, both groups showed significant decreases in PHQ-9, GAD-7, and TCM syndrome scores following treatment (P<0.05), along with a significant increase in SAQ scores (P<0.05). In the observation group, DA levels were significantly increased (P<0.05), while levels of IL-18, TNF-α, CD40, ET-1, and IMA were decreased (P<0.05). In contrast, the control group exhibited significantly increased CD40 levels (P<0.05). Compared with the control group after treatment, the observation group showed significant improvements in the SAQ dimensions of physical limitation, angina stability, treatment satisfaction, and disease perception, as well as in TCM syndrome score, PHQ-9 score, IL-18, CD40, ET-1, and IMA (P<0.05). No adverse reactions were observed in either group during treatment. ConclusionShexiang Baoxinwan can improve anxiety and depression, alleviate angina symptoms, and reduce TCM symptoms of Qi stagnation and blood stasis in CAD patients. The mechanism may involve anti-inflammation, improvement of vascular endothelial function, reduction of IMA, and increase of monoamine neurotransmitter levels.
3.Randomized Double-blind Placebo-controlled Study on Clinical Efficacy and Mechanism of Shexiang Baoxinwan in Treating Stable Angina Pectoris Complicated with Anxiety and Depression in Coronary Artery Disease
Jie WANG ; Linzi LONG ; Zhiru ZHAO ; Feifei LIAO ; Jieming LU ; Tianjiao LIU ; Yuxuan PENG ; Hua QU ; Changgeng FU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):159-169
ObjectiveTo evaluate the efficacy of Shexiang Baoxinwan in treating stable angina pectoris with Qi stagnation and blood stasis syndrome in patients with coronary artery disease (CAD) complicated with anxiety and depression and explore its underlying mechanisms. MethodsThis study employed a randomized, double-blind, and placebo-controlled clinical trial design. Patients admitted to the hospital were randomly assigned to the observation group and the control group, with 52 patients in each group. Patients in the observation and control groups received Shexiang Baoxinwan and placebo, respectively, both in combination with conventional Western medication. The dose was 45.0 mg, three times daily, for a total duration of eight weeks. The primary outcome was the Seattle Angina Questionnaire (SAQ) scores before and after treatment. Secondary outcomes included changes in traditional Chinese medicine (TCM) syndrome score, the patient health questionnaire-9 (PHQ-9), generalized anxiety disorder-7 (GAD-7), inflammatory markers [interleukin-18 (IL-18), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), CD40, etc.], monoamine neurotransmitters [e.g., dopamine (DA)], vascular endothelial function markers [e.g., endothelin-1(ET-1)], adipokines, and ischemia-modified albumin (IMA). Adverse reactions were also recorded. ResultsA total of 92 patients completed the study, with 44 in the observation group and 48 in the control group. Compared with baseline, both groups showed significant decreases in PHQ-9, GAD-7, and TCM syndrome scores following treatment (P<0.05), along with a significant increase in SAQ scores (P<0.05). In the observation group, DA levels were significantly increased (P<0.05), while levels of IL-18, TNF-α, CD40, ET-1, and IMA were decreased (P<0.05). In contrast, the control group exhibited significantly increased CD40 levels (P<0.05). Compared with the control group after treatment, the observation group showed significant improvements in the SAQ dimensions of physical limitation, angina stability, treatment satisfaction, and disease perception, as well as in TCM syndrome score, PHQ-9 score, IL-18, CD40, ET-1, and IMA (P<0.05). No adverse reactions were observed in either group during treatment. ConclusionShexiang Baoxinwan can improve anxiety and depression, alleviate angina symptoms, and reduce TCM symptoms of Qi stagnation and blood stasis in CAD patients. The mechanism may involve anti-inflammation, improvement of vascular endothelial function, reduction of IMA, and increase of monoamine neurotransmitter levels.
4.Mitochondial-located miRNAs in The Regulation of mtDNA Expression
Peng-Xiao WANG ; Le-Rong CHEN ; Zhen WANG ; Jian-Gang LONG ; Yun-Hua PENG
Progress in Biochemistry and Biophysics 2025;52(7):1649-1660
Mitochondria, functioning not only as the central hub of cellular energy metabolism but also as semi-autonomous organelles, orchestrate cellular fate decisions through their endogenous mitochondrial DNA (mtDNA), which encodes core components of the electron transport chain. Emerging research has identified microRNAs localized within mitochondria, termed mitochondria-located microRNAs (mitomiRs). Recent studies have revealed that mitomiRs are transcribed from nuclear DNA (nDNA), processed and matured in the cytoplasm, and subsequently transported into mitochondria. mitomiRs regulate mtDNA through diverse mechanisms, including modulation of mtDNA expression at the translational level and direct binding to mtDNA to influence transcription. Aberrant expression of mitomiRs leads to mitochondrial dysfunction and contributes to the pathogenesis of metabolic diseases. Restoring mitomiR expression to physiological levels using mitomiRs mimics or inhibitors has been shown to improve mitochondrial function and alleviate related diseases. Consequently, the regulatory mechanisms of mitomiRs have become a major focus in mitochondrial research. Given that mitomiRs are located in mitochondria, targeted delivery strategies designed for mtDNA can be adapted for the delivery of mitomiRs mimics or inhibitors. However, numerous intracellular and extracellular barriers remain, highlighting the need for more precise and efficient delivery systems in the future. The regulation of mtDNA expression mediated by mitomiRs not only expands our understanding of miRNA functions in post-transcriptional gene regulation but also provides promising molecular targets for the treatment of mitochondrial-related diseases. This review systematically summarizes recent research progress on mitomiRs in regulating mtDNA expression and discusses the underlying mechanisms of mitomiRs-mtDNA interactions. Additionally, it provides new perspectives on precision therapeutic strategies, with a particular emphasis on mitomiRs-based regulation of mitochondrial function in mitochondrial-related diseases.
5.Status and Progress of Research on Metabolomics of Cervical Cancer
Shaojun CHEN ; Ling GAN ; Xinkang CHEN ; Lingling XIONG ; Die LONG ; Lulu CHEN ; Mengzhuan WEI ; Li HUA ; Haixin HUANG
Cancer Research on Prevention and Treatment 2025;52(7):630-636
Cervical cancer is one of the most common gynecological malignant tumors in China. Given their lack of obviously early symptoms, more than half of patients with cervical cancer are diagnosed in the middle and late stages of this malignancy, resulting in poor prognosis. Finding new therapeutic targets is the current research direction. Metabolomics, as a new omics technology, is expected to provide new targets for tumor precision diagnosis and treatment through the analysis of the changes and potential mechanisms of metabolites in tumor occurrence and development by chromatography, mass spectrometry, and other technologies. Herein, we review the research methods of metabolomics; metabolic characteristics of cervical cancer; and progress of the research on metabolomics in cervical cancer diagnosis, curative effect prediction, and prognosis evaluation to provide new ideas for the precise diagnosis and treatment of cervical cancer.
6.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
7.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
8.GLUT1-targeted Nano-delivery System for Active Ingredients of Traditional Chinese Medicine:A Review
Hua ZHU ; Huimin LUO ; Si LIN ; Bingbing WANG ; Jinwei LI ; Liba XU ; Miao ZHANG ; Fengfeng XIE ; Long CHEN ; Meilin LI ; Lu LU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(12):270-280
Tumor cells use glycolysis to provide material and energy under hypoxic conditions to meet the energy requirements for rapid growth and proliferation, namely the Warburg effect. Even under aerobic conditions, tumor cells mainly rely on glycolysis to provide energy. Therefore, glucose transporter protein 1(GLUT1), which is involved in the process of glucose metabolism, plays an important role in tumorigenesis, development and drug resistance, and is considered to be one of the important targets in the treatment of malignant tumors. In recent years, research on tumor glucose metabolism has gradually become a hot spot. It has been shown that various factors are involved in the regulation of tumor energy metabolism, among which the role of GLUT1 is the most critical. In this paper, the authors reviewed the latest research progress of GLUT1-targeted traditional Chinese medicine(TCM) active ingredient nano-delivery system in tumor therapy, aiming to reveal the feasibility and effectiveness of this system in the delivery of chemotherapeutic drugs. The GLUT1-targeted TCM active ingredient nano-delivery system can overcome the bottleneck of the traditional targeting strategy as well as the high-permeability long retention(EPR) effect. In summary, the authors believe that the GLUT1-targeted TCM active ingredient nano-delivery system provides a new strategy for targeted treatment of tumors and has a broad application prospect in tumor prevention and treatment.
9.Discussion on the Pathogenesis of Osteonecrosis of the Femoral Head Under the System of Non-uniform Settlement During Bone Resorption and Multidimensional Composite Bowstring Working in Coordination with the Theory of Liver-Kidney and Muscle-Bone Based on the Concept of Liver and Kidney Sharing the Common Source
Gui-Xin ZHANG ; Feng YANG ; Le ZHANG ; Jie LIU ; Zhi-Jian CHEN ; Lei PENG ; En-Long FU ; Shu-Hua LIU ; Chang-De WANG ; Chun-Zhu GONG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):239-246
From the perspective of the physiological basis of liver and kidney sharing the common source in traditional Chinese medicine(TCM),and by integrating the theory of kidney dominating bone,liver dominating tendon,and meridian sinew of TCM as well as the bone resorption and collapse theory,and non-uniform settlement theory and lower-limb musculoskeletal bowstring structure theory of modern orthopedics,the pathogenesis of osteonecrosis of the femoral head(ONFH)under the system of non-uniform settlement during bone resorption and multidimensional composite bowstring working in coordination with the theory of liver-kidney and muscle-bone was explored.The key to the TCM pathogenesis of ONFH lies in the deficiency of the liver and kidney,and then the imbalance of kidney yin-yang leads to the disruption of the dynamic balance of bone formation and bone resorption mediated by osteoblasts-osteoclasts,which manifests as the elevated level of bone metabolism and the enhancement of focal bone resorption in the femoral head,and then leads to the necrosis and collapse of the femoral head.It is considered that the kidney dominates bone,liver dominates tendon,and the tendon and bone together constitute the muscle-bone-joint dynamic and static system of the hip joint.The appearance of collapse destroys the originally balanced muscle-bone-joint system.Moreover,the failure of liver blood in the nourishment of muscles and tendons further exacerbates the imbalance of the soft tissues around the hip joint,accelerates the collapse of the muscle-bone-joint dynamic and static system,speeds up the process of femoral head collapse,and ultimately results in irreversible outcomes.Based on the above pathogenesis,the systematic integrative treatment of ONFH should be based on the TCM holistic concept,focuses on the focal improvement of internal and external blood circulation of the femoral head by various approaches,so as to rebuild the coordination of joint function.Moreover,attention should be paid to the physical constitution of the patients,and therapy of tonifying the kidney and regulating the liver can be used to restore the balance between osteogenesis and osteoblastogenesis,and to reconstruct the muscle-bone-joint system,so as to effectively delay or even prevent the occurrence of ONFH.
10.The relationship between activities of daily living and mental health in community elderly people and the mediating role of sleep quality
Heng-Yi ZHOU ; Jing LI ; Dan-Hua DAI ; Yang LI ; Bin ZHANG ; Rong DU ; Rui-Long WU ; Jia-Yan JIANG ; Yuan-Man WEI ; Jing-Rong GAO ; Qi ZHAO
Fudan University Journal of Medical Sciences 2024;51(2):143-150
Objective To explore the relationship and internal path between activities of daily living(ADL),sleep quality and mental health of community elderly people in Shanghai.Methods A questionnaire survey was conducted among community residents aged 60 years and older seeing doctors in community health care center of five streets in Shanghai during Sept to Dec,2021 using convenience sampling.Activities of Daily Living(ADL),Pittsburgh Sleep Quality Index(PSQI)and 10-item Kessler Psychological Distress Scale(K10)were adopted in the survey.Single factor analysis,correlation analysis and multiple linear regression were used to analyze the data.The effect relationship between the variables was tested using Bootstrap's mediated effects test.Results A total of 1 864 participants were included in the study.The average score was 15.53±4.47 for ADL,5.60±3.71 for PSQI and 15.50±6.28 for K10.The rate of ADL impairment,poor sleep quality,poor and very poor mental health of the elderly were 23.6%,27.3%,11.9%and 4.9%,respectively.ADL and sleep quality were all positively correlated with mental health(r=0.321,P<0.001;r=0.466,P<0.001);ADL was positively correlated with sleep quality(r=0.294,P<0.001).Multiple linear results of factors influencing mental health showed that ADL(β= 0.457,95%CI:0.341-0.573),sleep quality(β =0.667,95%CI:0.598-0.737)and mental health were positively correlated(P<0.001).Sleep quality partially mediated the relationship between ADL and mental health(95%CI:0.078-0.124)with an effect size of 33.0%.Conclusion Sleep quality is a mediator between ADL and mental health among community elderly people.Improving ADL and sleep quality may improve mental health in the population.

Result Analysis
Print
Save
E-mail