1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
3.Introduction to Implementation Science Theories, Models, and Frameworks
Lixin SUN ; Enying GONG ; Yishu LIU ; Dan WU ; Chunyuan LI ; Shiyu LU ; Maoyi TIAN ; Qian LONG ; Dong XU ; Lijing YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1332-1343
Implementation Science is an interdisciplinary field dedicated to systematically studying how to effectively translate evidence-based research findings into practical application and implementation. In the health-related context, it focuses on enhancing the efficiency and quality of healthcare services, thereby facilitating the transition from scientific evidence to real-world practice. This article elaborates on Theories, Models, and Frameworks (TMF) within health-related Implementation Science, clarifying their basic concepts and classifications, and discussing their roles in guiding implementation processes. Furthermore, it reviews and prospects current research from three aspects: the constituent elements of TMF, their practical applications, and future directions. Five representative frameworks are emphasized, including the Consolidated Framework for Implementation Research (CFIR), the Practical Robust Implementation and Sustainability Model (PRISM), the Exploration, Preparation, Implementation, Sustainment (EPIS)framework, the Behavior Change Wheel (BCW), and the Normalization Process Theory (NPT). Additionally, resources such as the Dissemination & Implementation Models Webtool and the T-CaST tool are introduced to assist researchers in selecting appropriate TMFs based on project-specific needs.
4.Synthesis and evaluation for anti-HCoV-OC43 activity of novel aloperine derivatives with different core structures
Run-ze MENG ; Yue GONG ; Yu-long SHI ; Kun WANG ; Zong-gen PENG ; Dan-qing SONG
Acta Pharmaceutica Sinica 2024;59(2):404-412
In this study, we designed and synthesized 12 novel aloperine derivatives with different core structures. Among them, compound
5.Dapagliflozin attenuates endothelial cell pyroptosis and dysfunction induced by oxidized low-density lipoprotein
Quanwei ZHAO ; Hui LI ; Danan LIU ; Caiwei GONG ; Long CHEN
Chinese Journal of Tissue Engineering Research 2024;28(1):80-85
BACKGROUND:Dapagliflozin,an inhibitor of sodium-glucose cotransporter 2,can delay the progression of atherosclerosis by regulating glucose metabolism,inhibiting inflammation and improving endothelial cell function. OBJECTIVE:To study the effect of dapagliflozin on cell pyroptosis and endothelial dysfunction induced by oxidized low-density lipoprotein. METHODS:Human umbilical vein endothelial cells were divided into a control group(no intervention),a model group(treated with oxidized low-density lipoprotein for 24 hours),and a dapagliflozin group(treated with oxidized low-density lipoprotein + dapagliflozin for 24 hours).Endothelial cell proliferation activity was measured by cell counting kit-8 assay.The levels of intercellular adhesion molecule 1,vascular cell adhesion molecule 1,and monocyte chemotactic protein-1 in cell supernatant were detected using ELISA.Nitric oxide level in the cells was detected by nitrate reductase assay.The pyroptosis rate and characteristics of endothelial cells were detected by Hoechst 33342/PI fluorescence co-staining and lactate dehydrogenase release assay.The protein expression levels of NLRP3,caspase-1,GSDMD,interleukin-1β,and interleukin-18 were detected by western blot assay. RESULTS AND CONCLUSION:(1)Oxidized low-density lipoprotein could cause pyroptosis and dysfunction of endothelial cells.(2)Compared with the control group,the level of nitric oxide and cell activity were decreased(P<0.05),while lactate dehydrogenase,intercellular adhesion molecule 1,vascular cell adhesion molecule 1,and monocyte chemotactic protein-1 levels were significantly increased in the model group(P<0.05).Compared with the model group,cell activity and nitric oxide levels significantly increased(P<0.05),but lactate dehydrogenase,intercellular adhesion molecule 1,vascular cell adhesion molecule 1,and monocyte chemotactic protein-1 levels were significantly diminished in the dapagliflozin group(P<0.05).(3)Compared with the model group,cell pyroptosis rate and the protein expression of pyroptosis factor NLRP3,caspase-1,GSDMD,interleukin-18 and interleukin-1β significantly reduced in the dapagliflozin group(P<0.05).(4)The results indicate that dapagliflozin inhibits oxidized low-density lipoprotein-induced endothelial pyroptosis and ameliorates endothelial cell dysfunction.
6.Bone marrow mesenchymal stem cell exosomes combined with epigallocatechin-3-gallate in treatment of spinal cord ischemia/reperfusion injury in rats
Zhisheng LONG ; Feipeng GONG ; Jiabin WEN ; Huan MIN ; Yang SHU ; Zhuoxi LAI ; Gang CHEN
Chinese Journal of Tissue Engineering Research 2024;28(19):2953-2959
BACKGROUND:Studies have exhibited that inhibiting apoptosis caused by endoplasmic reticulum stress can save part of nerve function.Epigallocatechin-3-gallate can inhibit endoplasmic reticulum stress,but it has poor bioavailability and is difficult to penetrate the blood-brain barrier.In combination with exosomes targeting spinal cord repair and high-potency drug loading,theoretically,the combination of the two can play a greater role in spinal cord protection. OBJECTIVE:To investigate the effects of epigallocatechin-3-gallate combined with bone marrow mesenchymal stem cell exosomes on endoplasmic reticulum stress and neurological function in rats with spinal cord ischemia/reperfusion injury. METHODS:Fifty SD male rats were randomly divided into sham surgery group,model group,epigallocatechin-3-gallate group,exosome group,and combined treatment group,with 10 rats in each group.The spinal cord ischemia/reperfusion injury model was made in the other four groups except for the sham surgery group.Local injection of physiological saline,exosomes,epigallocatechin-3-gallate,epigallocatechin-3-gallate + bone marrow mesenchymal stem cell exosomes was performed 2 hours after surgery through a caudal vein.Neurological function scores were performed on 7,14 and 28 days after spinal cord injury.14 days after spinal cord injury,hematoxylin-eosin staining,Nissl staining,and immunofluorescence staining of endoplasmic reticulum stress markers such as ATF6 and GADD153 were performed in the spinal cord tissues. RESULTS AND CONCLUSION:(1)Compared with the sham surgery group,neurological function scores of the model group,exosome group,epigallocatechin-3-gallate group and combined treatment group all decreased to different degrees.The neurological function score of combined treatment group was better than that of the epigallocatechin-3-gallate group,exosome group and model group 14 days after surgery(P<0.05).The neurological function score of the combined treatment group was better than that of the model group and epigallocatechin-3-gallate group 28 days after surgery(P<0.05).(2)Hematoxylin-eosin staining and Nissl staining displayed that the number of neurons in the model group decreased,with a large number of cavity necrosis and scar hyperplasia in the spinal cord injury area.The number of neurons and peripheral cavity necrosis improved to varying degrees in the epigallocatechin-3-gallate group,exosome group,and combined treatment group,with the most significant improvement in the combined treatment group.(3)The expression of endoplasmic reticulum stress-related proteins ATF6 and GADD153:14 days postoperatively,the expression of GADD153 in the combined treatment group was lower than that in the model group and epigallocatechin-3-gallate group(P<0.05),and the expression of ATF6 in the combined treatment group was lower than that in the model group,exosome group,and epigallocatechin-3-gallate group(P<0.05).(4)These findings confirm that epigallocatechin-3-gallate combined with bone marrow mesenchymal stem cell exosome can enhance the neurological function in rats with spinal cord ischemia/reperfusionn injury,which may be associated with the inhibition of the expression of endoplasmic reticulum stress-related proteins ATF6 and GADD153.
7.Application of BOPPPS combined with various teaching methods in internship course of pediatric infectious diseases
Shu GONG ; Cong LIU ; Xiaoru LONG ; Ruiqiu ZHAO ; Hongmei XU ; Xue ZHAN ; Yuting WANG
Chinese Journal of Medical Education Research 2024;23(2):246-250
Objective:To explore the effects of participatory interactive teaching in the clinical internship course of pediatric infectious diseases.Methods:217 undergraduate students of grade 2018 majoring in pediatrics were selected as the experimental group, and 208 undergraduate students of grade 2017 majoring in pediatrics were selected as the control group. The experimental group used the teaching method of BOPPPS combined with case-based learning and team-based learning, while the control group adopted the traditional teaching method. Evaluate the learning effectiveness by comparing the formative evaluation and theoretical exam scores of the two groups , and a questionnaire survey was conducted for the students in the experimental group to investigate teaching feedback. SPSS 19.0 was used to perform the t test for data analysis. Results:The experimental group had significantly better scores than the control group in final theoretical examination [(75.04±9.12) vs. (71.03±9.51), P<0.05] and formative evaluation [(81.03±6.13) vs. (70.02±10.32), P<0.05]. According to the results of the questionnaire survey on teaching satisfaction, the students were satisfied with the interactive participatory teaching method in the four aspects of improving learning interest, improving learning ability, classroom satisfaction level, and course acceptance level. Conclusions:The pragmatic teaching reform in the internship of pediatric infectious diseases is highly accepted by students and beneficial to improving students' clinical thinking ability and comprehensive quality, which is worth further application and promotion.
8.Identification and Analysis of Prognosis-related Core Genes in Sepsis Based on Bioinformatics
Qian WANG ; Rui GONG ; Gan-Gyu LONG
Journal of Medical Research 2024;53(1):24-30
Objective To identify the potential core genes affecting the prognosis of sepsis based on bioinformatics.Methods The Gene Expression Omnibus(GEO)database was used to screen the gene expression datasets GSE54514 and GSE65682 from septic pa-tients.Key genes related to the prognosis of sepsis were screened by weighted gene co-expression network analysis(WGCNA)and Venn analysis.the Metascape database,the RcisTarget package,and the CIBERSORT algorithm were used to perform gene function enrichment analysis,transcription factor enrichment analysis,and immune infiltration analysis.The dataset GSE5772 was selected for validation to screen core genes associated with the prognosis of sepsis,and the survival analysis was performed by the Kaplan-Meier method.Results Co-expression network analysis was performed on the datasets GSE54514 and GSE65682,respectively,and the"green"and"brown"modules with the highest prognostic correlation to sepsis were selected.The intersection of genes in the two modules was taken,and 20 key genes were obtained by Venn analysis.These key genes were mainly enriched into the regulation of cell morphology,monocyte migration,and other pathways.Enrichment analysis of the transcription factor showed that the transcription factor ZNF148 might be one of the main regulators of the gene set.Further verification of data set GSE5772 revealed that the genes FGD3,MBP,MSN,RNF130 and SETD1B were significantly low expressed in septic patients(P<0.05).Immune infiltration analysis showed that these five core genes were closely related to the content of immune cells.The expressions of FGD3,MSN and RNF130 were correlated with the survival rate of septic pa-tients(P<0.05).Conclusion Five core genes associated with the prognosis of sepsis were screened via bioinformatics methods,which are closely related to immune cells.The genes FGD3,MSN and RNF130 may be important predictors for the prognosis of sepsis.
9.HIV self-testing application through online platform among men who have sex with men in Tianjin City
HOU Jinyu ; BAI Jianyun ; GUO Yan ; LI Jia ; LI Long ; GONG Hui ; YU Maohe
Journal of Preventive Medicine 2024;36(6):470-473
Objective:
To understand characteristics of men who have sex with men (MSM) who applied for HIV antibody self-testing reagents through "AIDS self-testing" column of a WeChat official account named "Dark Blue Public Health Center" in Tianjin City, so as to provide insights into exploring online modes of HIV antibody self-testing for MSM.
Methods:
Data of MSM who were 18 years old or above, currently lived in Tianjin City, had sex with men in the past six months and applied for HIV antibody self-testing reagents through "AIDS self-testing" column from May 2018 to December 2022 were collected. Demographic characteristics, results return and positive findings were descriptively analyzed.
Results:
Data of 2 064 MSM were collected, including 1 052 MSM aged 20 to 29 years (50.97%), 1 522 unmarried MSM (73.74%), 545 workers (26.41%), 1 385 MSM with college education or above (67.10%), and 315 MSM without testing for HIV antibody in the past (15.26%). A total of 6 470 self-testing reagents were applied, and 5 942 testing results were returned, with a return rate of 91.84%. There were 33.28% (687/2 064) of the applicants applying for 66.32% (4 291/6 470) reagents multiple times. There were 73 MSM with positive results, accounting for 1.23%.
Conclusions
The MSM applying for HIV antibody self-testing reagents through "AIDS self-testing" are mainly young and highly educated, including some who have never tested for HIV. However, attention should be paid to duplicate applications and the return rate should be increased.
10.Improved unilateral puncture PVP based on 3D printing technology for the treatment of osteoporotic vertebral com-pression fracture
Wei-Li JIANG ; Tao LIU ; Qing-Bo ZHANG ; Hui CHEN ; Jian-Zhong BAI ; Shuai WANG ; Jia-Wei CHENG ; Ya-Long GUO ; Gong ZHOU ; Guo-Qi NIU
China Journal of Orthopaedics and Traumatology 2024;37(1):7-14
Objective To investigate the clinical effect of unilateral percutaneous vertebroplasty(PVP)combined with 3D printing technology for the treatment of thoracolumbar osteoporotic compression fracture.Methods A total of 77 patients with thoracolumbar osteoporotic compression fractures from October 2020 to April 2022 were included in the study,all of which were vertebral body compression fractures caused by trauma.According to different treatment methods,they were di-vided into experimental group and control group.Thirty-two patients used 3D printing technology to improve unilateral transpedicle puncture vertebroplasty in the experimental group,there were 5 males and 27 females,aged from 63 to 91 years old with an average of(77.59±8.75)years old.Forty-five patients were treated with traditional bilateral pedicle puncture vertebroplasty,including 7 males and 38 females,aged from 60 to 88 years old with an average of(74.89±7.37)years old.Operation time,intraoperative C-arm X-ray times,anesthetic dosage,bone cement injection amount,bone cement diffusion good and good rate,complications,vertebral height,kyphotic angle(Cobb angle),visual analogue scale(VAS),Oswestry disability index(ODI)and other indicators were recorded before and after surgery,and statistically analyzed.Results All patients were followed up for 6 to 23 months,with preoperative imaging studies,confirmed for thoracolumbar osteoporosis com-pression fractures,two groups of patients with postoperative complications,no special two groups of patients'age,gender,body mass index(BMI),time were injured,the injured vertebral distribution had no statistical difference(P>0.05),comparable data.Two groups of patients with bone cement injection,bone cement dispersion rate,preoperative and postoperative vertebral body height,protruding after spine angle(Cobb angle),VAS,ODI had no statistical difference(P>0.05).The operative time,intra-operative fluoroscopy times and anesthetic dosage were statistically different between the two groups(P<0.05).Compared with the traditional bilateral puncture group,the modified unilateral puncture group combined with 3D printing technology had shorter operation time,fewer intraoperative fluoroscopy times and less anesthetic dosage.The height of anterior vertebral edge,kyphosis angle(Cobb angle),VAS score and ODI of the affected vertebrae were statistically different between two groups at each time point after surgery(P<0.05).Conclusion In the treatment of thoracolumbar osteoporotic compression fractures,3D printing technology is used to improve unilateral puncture PVP,which is convenient and simple,less trauma,short operation time,fewer fluoroscopy times,satisfactory distribution of bone cement,vertebral height recovery and kyphotic Angle correction,and good functional improvement.


Result Analysis
Print
Save
E-mail