1.TRIM25 inhibits HBV replication by promoting HBx degradation and the RIG-I-mediated pgRNA recognition.
Hongxiao SONG ; Qingfei XIAO ; Fengchao XU ; Qi WEI ; Fei WANG ; Guangyun TAN
Chinese Medical Journal 2023;136(7):799-806
BACKGROUND:
The hepatitis B virus (HBV) vaccine has been efficiently used for decades. However, hepatocellular carcinoma caused by HBV is still prevalent globally. We previously reported that interferon (IFN)-induced tripartite motif-containing 25 (TRIM25) inhibited HBV replication by increasing the IFN expression, and this study aimed to further clarify the anti-HBV mechanism of TRIM25.
METHODS:
The TRIM25-mediated degradation of hepatitis B virus X (HBx) protein was determined by detecting the expression of HBx in TRIM25-overexpressed or knocked-out HepG2 or HepG2-NTCP cells via Western blotting. Co-immunoprecipitation was performed to confirm the interaction between TRIM25 and HBx, and colocalization of TRIM25 and HBx was identified via immunofluorescence; HBV e-antigen and HBV surface antigen were qualified by using an enzyme-linked immunosorbent assay (ELISA) kit from Kehua Biotech. TRIM25 mRNA, pregenomic RNA (pgRNA), and HBV DNA were detected by quantitative real-time polymerase chain reaction. The retinoic acid-inducible gene I (RIG-I) and pgRNA interaction was verified by RNA-binding protein immunoprecipitation assay.
RESULTS:
We found that TRIM25 promoted HBx degradation, and confirmed that TRIM25 could enhance the K90-site ubiquitination of HBx as well as promote HBx degradation by the proteasome pathway. Interestingly, apart from the Really Interesting New Gene (RING) domain, the SPRY domain of TRIM25 was also indispensable for HBx degradation. In addition, we found that the expression of TRIM25 increased the recognition of HBV pgRNA by interacting with RIG-I, which further increased the IFN production, and SPRY, but not the RING domain is critical in this process.
CONCLUSIONS
The study found that TRIM25 interacted with HBx and promoted HBx-K90-site ubiquitination, which led to HBx degradation. On the other hand, TRIM25 may function as an adaptor, which enhanced the recognition of pgRNA by RIG-I, thereby further promoting IFN production. Our study can contribute to a better understanding of host-virus interaction.
Humans
;
Hepatitis B virus
;
DEAD Box Protein 58/metabolism*
;
RNA
;
Liver Neoplasms
;
Virus Replication
;
Tripartite Motif Proteins/genetics*
;
Transcription Factors
;
Ubiquitin-Protein Ligases/genetics*
2.USP25 promotes hepatocellular carcinoma progression by interacting with TRIM21 via the Wnt/β-catenin signaling pathway.
Yinghui LIU ; Jingjing MA ; Shimin LU ; Pengzhan HE ; Weiguo DONG
Chinese Medical Journal 2023;136(18):2229-2242
BACKGROUND:
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The ubiquitin-specific peptidase 25 (USP25) protein has been reported to participate in the development of several cancers. However, few studies have reported its association with HCC. In this study, we aimed to investigate the function and mechanism of USP25 in the progression of HCC.
METHODS:
We analyzed USP25 protein expression in HCC based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database cohorts. Then, we constructed USP25-overexpressing and USP25-knockdown HepG2, MHCC97H, and L-O2 cells. We detected the biological function of USP25 by performing a series of assays, such as Cell Counting Kit-8 (CCK-8), colony formation, transwell, and wound healing assays. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed to detect the interaction between USP25 and the Wnt/β-catenin signaling pathway. The relationship between USP25 and tripartite motif-containing 21 (TRIM21) was assessed through mass spectrometry and co-immunoprecipitation (Co-IP) analysis. Finally, we constructed a mouse liver cancer model with the USP25 gene deletion to verify in vivo role of USP25.
RESULTS:
USP25 was highly expressed in HCC tissue and HCC cell lines. Importantly, high expression of USP25 in tissues was closely related to a poor prognosis. USP25 knockdown markedly reduced the proliferation, migration, and invasion of HepG2 and MHCC97H cells, whereas USP25 overexpression led to the opposite effects. In addition, we demonstrated that USP25 interacts with TRIM21 to regulate the expression of proteins related to epithelial-mesenchymal transition (EMT; E-cadherin, N-cadherin, and Snail) and the Wnt/β-catenin pathway (β-catenin, Adenomatous polyposis coli, Axin2 and Glycogen synthase kinase 3 beta) and those of their downstream proteins (C-myc and Cyclin D1). Finally, we verified that knocking out USP25 inhibited tumor growth and distant metastasis in vivo .
CONCLUSIONS
In summary, our data showed that USP25 was overexpressed in HCC. USP25 promoted the proliferation, migration, invasion, and EMT of HCC cells by interacting with TRIM21 to activate the β-catenin signaling pathway.
Animals
;
Mice
;
beta Catenin/genetics*
;
Carcinoma, Hepatocellular/pathology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
Liver Neoplasms/pathology*
;
Ubiquitin Thiolesterase/metabolism*
;
Wnt Signaling Pathway/genetics*
3.Inhibitory effect and molecular mechanism of sinomenine on human hepatocellular carcinoma HepG2 and SK-HEP-1 cells.
Ying-Ying TIAN ; Bei-Bei MA ; Xin-Yue ZHAO ; Chuang LIU ; Yi-Lin LI ; Shang-Yue YU ; Shi-Qiu TIAN ; Hai-Luan PEI ; Ying-Nan LYU ; Ze-Ping ZUO ; Zhi-Bin WANG
China Journal of Chinese Materia Medica 2023;48(17):4702-4710
This study aimed to investigate the effect and molecular mechanism of sinomenine on proliferation, apoptosis, metastasis, and combination with inhibitors in human hepatocellular carcinoma HepG2 cells and SK-HEP-1 cells. The effect of sinomenine on the growth ability of HepG2 and SK-HEP-1 cells were investigated by CCK-8 assay, colony formation assay, and BeyoClick~(TM) EdU-488 staining. The effect of sinomenine on DNA damage was detected by immunofluorescence assay, and the effect of sinomenine on apoptosis of human hepatocellular carcinoma cells was clarified by Hoechst 33258 staining and CellEvent~(TM) Cystein-3/7Green ReadyProbes~(TM) reagent assay. Cell invasion assay and 3D tumor cell spheroid invasion assay were performed to investigate the effect of sinomenine on the invasion ability of human hepatocellular carcinoma cells in vitro. The effect of sinomenine on the regulation of protein expression related to the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/signal transducer and activator of transcription 3(STAT3) signaling pathway in HepG2 and SK-HEP-1 cells was examined by Western blot. Molecular docking was used to evaluate the strength of affinity of sinomenine to the target cysteinyl aspartate specific proteinase-3(caspase-3) and STAT3, and combined with CCK-8 assay to detect the changes in cell viability after combination with STAT3 inhibitor JSI-124 in combination with CCK-8 assay. The results showed that sinomenine could significantly reduce the cell viability of human hepatocellular carcinoma cells in a concentration-and time-dependent manner, significantly inhibit the clonogenic ability of human hepatocellular carcinoma cells, and weaken the invasive ability of human hepatocellular carcinoma cells in vitro. In addition, sinomenine could up-regulate the cleaved level of poly ADP-ribose polymerase(PARP), a marker of apoptosis, and down-regulate the protein levels of p-Akt, p-mTOR, and p-STAT3 in human hepatocellular carcinoma cells. Molecular docking results showed that sinomenine had good affinity with the targets caspase-3 and STAT3, and the sensitivity of sinomenine to hepatocellular carcinoma cells was diminished after STAT3 was inhibited. Therefore, sinomenine can inhibit the proliferation and invasion of human hepatocellular carcinoma cells and induce apoptosis, and the mechanism may be attributed to the activation of caspase-3 signaling and inhibition of the Akt/mTOR/STAT3 pathway. This study can provide a new reference for the in-depth research and clinical application of sinomenine and is of great significance to further promote the scientific development and utilization of sinomenine.
Humans
;
Carcinoma, Hepatocellular/genetics*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Caspase 3/metabolism*
;
Liver Neoplasms/genetics*
;
Molecular Docking Simulation
;
Sincalide/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Hep G2 Cells
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
4.Formononetin enhances the antitumor effect of H22 hepatoma transplanted mice.
Mi LI ; Chengzhi JIANG ; Jianting CHEN ; Junyan WANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1063-1068
Objective To explore the effect of formononetin on immunity of mice with transplanted H22 hepatocarcinoma. Methods Male C57BL/6 mice were subcutaneously inoculated with H22 cells (4×105) to establish a tumor-bearing mouse model. The mice were treated with formononetin [10 mg/(kg.d)] or [50 mg/(kg.d)] for 28 days, and then the tumor inhibition rate was calculated. Carrilizumab was used as a positive control drug. The expressions of CD8, granzyme B and forkbox transcription factor 3 (FOXP3) in HCC tissues were analyzed by immunohistochemical staining. The mRNA and protein expression of programmed cell death protein 1 (PD-1) and its ligand 1 (PD-L1) in HCC tissues were detected by real-time PCR or Western blot analysis, respectively. The serum levels of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) were detected by ELISA. Results Formononetin increased the tumor inhibition rate and the positive rate of CD8 and granzyme B staining in tumor-bearing mice. There was no significant difference in the positive rate of FOXP3 staining in tumor tissues of mice in each group. Formononetin decreased the levels of IL-10 and TGF-β in serum of tumor-bearing mice, and decreased the relative expression of mRNA and protein of PD-1 and PD-L1 in tumor tissue of tumor-bearing mice. Conclusion Formononetin can activate CD8+ T cells and reduce the release of immunosuppressive factors in regulatory T cells by blocking PD-1/PD-L1 pathway and play an antitumor role.
Male
;
Animals
;
Mice
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/genetics*
;
Interleukin-10/genetics*
;
B7-H1 Antigen
;
Granzymes/genetics*
;
Programmed Cell Death 1 Receptor/metabolism*
;
CD8-Positive T-Lymphocytes/metabolism*
;
Mice, Inbred C57BL
;
Transforming Growth Factor beta/genetics*
;
RNA, Messenger/metabolism*
;
Forkhead Transcription Factors/genetics*
;
Cell Line, Tumor
5.Integrins in human hepatocellular carcinoma tumorigenesis and therapy.
Qiong GAO ; Zhaolin SUN ; Deyu FANG
Chinese Medical Journal 2023;136(3):253-268
Integrins are a family of transmembrane receptors that connect the extracellular matrix and actin skeleton, which mediate cell adhesion, migration, signal transduction, and gene transcription. As a bi-directional signaling molecule, integrins can modulate many aspects of tumorigenesis, including tumor growth, invasion, angiogenesis, metastasis, and therapeutic resistance. Therefore, integrins have a great potential as antitumor therapeutic targets. In this review, we summarize the recent reports of integrins in human hepatocellular carcinoma (HCC), focusing on the abnormal expression, activation, and signaling of integrins in cancer cells as well as their roles in other cells in the tumor microenvironment. We also discuss the regulation and functions of integrins in hepatitis B virus-related HCC. Finally, we update the clinical and preclinical studies of integrin-related drugs in the treatment of HCC.
Humans
;
Integrins/metabolism*
;
Carcinoma, Hepatocellular/genetics*
;
Liver Neoplasms/genetics*
;
Cell Adhesion
;
Carcinogenesis
;
Cell Transformation, Neoplastic
;
Tumor Microenvironment
6.PDCD6 Promotes Hepatocellular Carcinoma Cell Proliferation and Metastasis through the AKT/GSK3β/β-catenin Pathway.
Shi Yuan WEN ; Yan Tong LIU ; Bing Yan WEI ; Jie Qiong MA ; Yan Yan CHEN
Biomedical and Environmental Sciences 2023;36(3):241-252
OBJECTIVE:
Programmed cell death 6 (PDCD6), a Ca 2+-binding protein, has been reported to be aberrantly expressed in all kinds of tumors. The aim of this study was to explore the role and mechanism of PDCD6 in hepatocellular carcinomas (HCCs).
METHODS:
The expression levels of PDCD6 in liver cancer patients and HCC cell lines were analyzed using bioinformatics and Western blotting. Cell viability and metastasis were determined by methylthiazol tetrazolium (MTT) and transwell assays, respectively. And Western blotting was used to test related biomarkers and molecular pathway factors in HCC cell lines. LY294002, a PI3K inhibitor inhibiting AKT, was used to suppress the AKT/GSK3β/β-catenin pathway to help evaluate the role of this pathway in the HCC carcinogenesis associated with PDCD6.
RESULTS:
The analysis of The Cancer Genome Atlas Database suggested that high PDCD6 expression levels were relevant to liver cancer progression. This was consistent with our finding of higher levels of PDCD6 expression in HCC cell lines than in normal hepatocyte cell lines. The results of MTT, transwell migration, and Western blotting assays revealed that overexpression of PDCD6 positively regulated HCC cell proliferation, migration, and invasion. Conversely, the upregulation of PDCD6 expression in the presence of an AKT inhibitor inhibited HCC cell proliferation, migration, and invasion. In addition, PDCD6 promoted HCC cell migration and invasion by epithelial-mesenchymal transition. The mechanistic investigation proved that PDCD6 acted as a tumor promoter in HCC through the AKT/GSK3β/β-catenin pathway, increasing the expression of transcription factors and cellular proliferation and metastasis.
CONCLUSION
PDCD6 has a tumor stimulative role in HCC mediated by AKT/GSK3β/β-catenin signaling and might be a potential target for HCC progression.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
beta Catenin/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Cell Line
;
Cell Proliferation
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Calcium-Binding Proteins/metabolism*
;
Apoptosis Regulatory Proteins/genetics*
7.Targeting TRMT5 suppresses hepatocellular carcinoma progression via inhibiting the HIF-1α pathways.
Qiong ZHAO ; Luwen ZHANG ; Qiufen HE ; Hui CHANG ; Zhiqiang WANG ; Hongcui CAO ; Ying ZHOU ; Ruolang PAN ; Ye CHEN
Journal of Zhejiang University. Science. B 2023;24(1):50-63
Accumulating evidence has confirmed the links between transfer RNA (tRNA) modifications and tumor progression. The present study is the first to explore the role of tRNA methyltransferase 5 (TRMT5), which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma (HCC) progression. Here, based on bioinformatics and clinical analyses, we identified that TRMT5 expression was upregulated in HCC, which correlated with poor prognosis. Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro, which may be partially explained by declined extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mechanistically, we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1 (HIF-1) signaling pathway by preventing HIF-1α stability through the enhancement of cellular oxygen content. Moreover, our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-1α. In conclusion, our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs. Thus, TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Cell Hypoxia
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Liver Neoplasms/pathology*
;
Signal Transduction/genetics*
;
tRNA Methyltransferases/metabolism*
8.Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway.
Chu-Lan XIAO ; Zhi-Peng ZHONG ; Can LÜ ; Bing-Jie GUO ; Jiao-Jiao CHEN ; Tong ZHAO ; Zi-Fei YIN ; Bai LI
Journal of Integrative Medicine 2023;21(2):184-193
OBJECTIVE:
Physical exercise, a common non-drug intervention, is an important strategy in cancer treatment, including hepatocellular carcinoma (HCC). However, the mechanism remains largely unknown. Due to the importance of hypoxia and cancer stemness in the development of HCC, the present study investigated whether the anti-HCC effect of physical exercise is related to its suppression on hypoxia and cancer stemness.
METHODS:
A physical exercise intervention of swimming (30 min/d, 5 d/week, for 4 weeks) was administered to BALB/c nude mice bearing subcutaneous human HCC tumor. The anti-HCC effect of swimming was assessed in vivo by tumor weight monitoring, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) detection of proliferating cell nuclear antigen (PCNA) and Ki67. The expression of stemness transcription factors, including Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), v-Myc avian myelocytomatosis viral oncogene homolog (C-MYC) and hypoxia-inducible factor-1α (HIF-1α), was detected using real-time reverse transcription polymerase chain reaction. A hypoxia probe was used to explore the intratumoral hypoxia status. Western blot was used to detect the expression of HIF-1α and proteins related to protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. The IHC analysis of platelet endothelial cell adhesion molecule-1 (CD31), and the immunofluorescence co-location of CD31 and desmin were used to analyze tumor blood perfusion. SMMC-7721 cells were treated with nude mice serum. The inhibition effect on cancer stemness in vitro was detected using suspension sphere experiments and the expression of stemness transcription factors. The hypoxia status was inferred by measuring the protein and mRNA levels of HIF-1α. Further, the expression of proteins related to Akt/GSK-3β/β-catenin signaling pathway was detected.
RESULTS:
Swimming significantly reduced the body weight and tumor weight in nude mice bearing HCC tumor. HE staining and IHC results showed a lower necrotic area ratio as well as fewer PCNA or Ki67 positive cells in mice receiving the swimming intervention. Swimming potently alleviated the intratumoral hypoxia, attenuated the cancer stemness, and inhibited the Akt/GSK-3β/β-catenin signaling pathway. Additionally, the desmin+/CD31+ ratio, rather than the number of CD31+ vessels, was significantly increased in swimming-treated mice. In vitro experiments showed that treating cells with the serum from the swimming intervention mice significantly reduced the formation of SMMC-7721 cell suspension sphere, as well as the mRNA expression level of stemness transcription factors. Consistent with the in vivo results, HIF-1α and Akt/GSK-3β/β-catenin signaling pathway were also inhibited in cells treated with serum from swimming group.
CONCLUSION
Swimming alleviated hypoxia and attenuated cancer stemness in HCC, through suppression of the Akt/GSK-3β/β-catenin signaling pathway. The alleviation of intratumoral hypoxia was related to the increase in blood perfusion in the tumor. Please cite this article as: Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. J Integr Med. 2023; 21(2): 184-193.
Humans
;
Animals
;
Mice
;
Carcinoma, Hepatocellular/drug therapy*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Proliferating Cell Nuclear Antigen/therapeutic use*
;
Mice, Nude
;
Glycogen Synthase Kinase 3 beta/genetics*
;
beta Catenin/therapeutic use*
;
Liver Neoplasms/drug therapy*
;
Desmin/therapeutic use*
;
Ki-67 Antigen
;
Cell Line, Tumor
;
Hypoxia
;
RNA, Messenger/therapeutic use*
;
Cell Proliferation
9.A preliminary discussion on carnosine dipeptidase 1 as a potential novel biomarker for the diagnostic and prognostic evaluation of hepatocellular carcinoma.
Xin LI ; Yan LI ; Xi LI ; Li Na JIANG ; Li ZHU ; Feng Min LU ; Jing Min ZHAO
Chinese Journal of Hepatology 2023;31(6):627-633
Objective: To explore carnosine dipeptidase 1 (CNDP1) potential value as a diagnostic and prognostic evaluator of hepatocellular carcinoma (HCC). Methods: A gene chip and GO analysis were used to screen the candidate marker molecule CNDP1 for HCC diagnosis. 125 cases of HCC cancer tissues, 85 cases of paracancerous tissues, 125 cases of liver cirrhosis tissues, 32 cases of relatively normal liver tissue at the extreme end of hepatic hemangioma, 66 cases from serum samples of HCC, and 82 cases of non-HCC were collected. Real-time fluorescent quantitative PCR, immunohistochemistry, western blot, and enzyme-linked immunosorbent assay were used to detect the differences in mRNA and protein expression levels of CNDP1 in HCC tissue and serum. Receiver operating characteristic (ROC) curves and Kaplan-Meier survival were used to analyze and evaluate the value of CNDP1 in the diagnosis and prognosis of HCC patients. Results: The expression level of CNDP1 was significantly reduced in HCC cancer tissues. The levels of CNDP1 were significantly lower in the cancer tissues and serum of HCC patients than those in liver cirrhosis patients and normal controls. ROC curve analysis showed that the area under the curve of serum CNDP1 in the diagnosis of HCC patients was 0.753 2 (95% CI 0.676-0.830 5), and the sensitivity and specificity were 78.79% and 62.5%, respectively. The combined detection of serum CNDP1 and serum alpha-fetoprotein (AFP) significantly improved the diagnostic accuracy (AUC = 0.820 6, 95% CI 0.753 5-0.887 8). The diagnostic sensitivity and specificity of serum CNDP1 for AFP-negative HCC patients were 73.68% and 68.75% (AUC = 0.793 1, 95% CI 0.708 8-0.877 4), respectively. In addition, the level of serum CNDP1 distinguished small liver cancer (tumor diameter < 3 cm) (AUC = 0.757 1, 95% CI 0.637 4-0.876 8). Kaplan-Meier survival analysis showed that CNDP1 was associated with a poor prognosis in HCC patients. Conclusion: CNDP1 may be a potential biomarker for the diagnostic and prognostic evaluation of HCC, and it has certain complementarity with serum AFP.
Humans
;
Carcinoma, Hepatocellular/genetics*
;
Liver Neoplasms/pathology*
;
Prognosis
;
Carnosine
;
alpha-Fetoproteins/metabolism*
;
Biomarkers, Tumor/genetics*
;
Liver Cirrhosis/diagnosis*
;
ROC Curve
10.Research progress on regulation of N6-adenylate methylation modification in lipid metabolism disorders.
Shu-Ya CHEN ; An-Yu NI ; Qiu-Hui QIAN ; Jin YAN ; Xue-Dong WANG ; Hui-Li WANG
Acta Physiologica Sinica 2023;75(3):439-450
Lipid metabolism is a complex physiological process, which is closely related to nutrient regulation, hormone balance and endocrine function. It involves the interactions of multiple factors and signal transduction pathways. Lipid metabolism disorder is one of the main mechanisms to induce a variety of diseases, such as obesity, diabetes, non-alcoholic fatty liver disease, hepatitis, hepatocellular carcinoma and their complications. At present, more and more studies have found that the "dynamic modification" of N6-adenylate methylation (m6A) on RNA represents a new "post-transcriptional" regulation mode. m6A methylation modification can occur in mRNA, tRNA, ncRNA, etc. Its abnormal modification can regulate gene expression changes and alternative splicing events. Many latest references have reported that m6A RNA modification is involved in the epigenetic regulation of lipid metabolism disorder. Based on the major diseases induced by lipid metabolism disorders, we reviewed the regulatory roles of m6A modification in the occurrence and development of those diseases. These overall findings inform further in-depth investigations of the underlying molecular mechanisms regarding the pathogenesis of lipid metabolism disorders from the perspective of epigenetics, and provide reference for health prevention, molecular diagnosis and treatment of related diseases.
Humans
;
Methylation
;
Epigenesis, Genetic
;
Lipid Metabolism/genetics*
;
Lipid Metabolism Disorders/genetics*
;
Liver Neoplasms
;
RNA

Result Analysis
Print
Save
E-mail