1.Fresh Rehmanniae Radix regulates cholesterol metabolism disorder in mice fed with high-fat and high-cholesterol diet via FXR-mediated bile acid reabsorption.
Xin-Yu MENG ; Yan CHEN ; Li-Qin ZHAO ; Qing-Pu LIU ; Yong-Huan JIN ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(6):1670-1679
This study aims to investigate the potential effect of the water extract of fresh Rehmanniae Radix on hypercholesterolemia in mice that was induced by a high-fat and high-cholesterol diet and explore its possible mechanism from bile acid reabsorption. Male C57BL/6 mice were randomly assigned into the following groups: control, model, low-and high-dose(4 and 8 g·kg~(-1), respectively) fresh Rehmanniae Radix, and positive drug(simvastatin, 0.05 g·kg~(-1)). Other groups except the control group were fed with a high-fat and high-cholesterol diet for 6 consecutive weeks to induce hypercholesterolemia. From the 6th week, mice were administrated with corresponding drugs daily via gavage for additional 6 weeks, while continuing to be fed with a high-fat and high-cholesterol diet. Serum levels of total cholesterol(TC), triglycerides(TG), low density lipoprotein-cholesterol(LDL-c), high density lipoprotein-cholesterol(HDL-c), and total bile acid(TBA), as well as liver TC and TG levels and fecal TBA level, were determined by commercial assay kits. Hematoxylin-eosin(HE) staining, oil red O staining, and transmission electron microscopy were performed to observe the pathological changes in the liver. Three livers samples were randomly selected from each of the control, model, and high-dose fresh Rehmanniae Radix groups for high-throughput transcriptome sequencing. Differentially expressed genes were mined and KEGG pathway enrichment analysis was performed to predict the key pathways and target genes of the water extract of fresh Rehmanniae Radix in the treatment of hypercholesterolemia. RT-qPCR was employed to measure the mRNA levels of cholesterol 7α-hydroxylase(CYP7A1) and cholesterol 27α-hydroxylase(CYP27A1) in the liver. Western blot was employed to determine the protein levels of CYP7A1 and CYP27A1 in the liver as well as farnesoid X receptor(FXR), apical sodium-dependent bile acid transporter(ASBT), and ileum bile acid-binding protein(I-BABP) in the ileum. The results showed that the water extract of fresh Rehmanniae Radix significantly lowered the levels of TC and TG in the serum and liver, as well as the level of LDL-c in the serum. Conversely, it elevated the level of HDL-c in the serum and TBA in feces. No significant difference was observed in the level of TBA in the serum among groups. HE staining, oil red O staining, and transmission electron microscopy showed that the water extract reduced the accumulation of lipid droplets in the liver. Further mechanism studies revealed that the water extract of fresh Rehmanniae Radix significantly down-regulated the protein levels of FXR and bile acid reabsorption-related proteins ASBT and I-BABP. Additionally, it enhanced CYP7A1 and CYP27A1, the key enzymes involved in bile acid synthesis. Therefore, it is hypothesized that the water extract of fresh Rehmanniae Radix may exert an anti-hypercholesterolemic effect by regulating FXR/ASBT/I-BABP signaling, inhibiting bile acid reabsorption, and increasing bile acid excretion, thus facilitating the conversion of cholesterol to bile acids.
Animals
;
Male
;
Bile Acids and Salts/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Diet, High-Fat/adverse effects*
;
Cholesterol/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hypercholesterolemia/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Rehmannia/chemistry*
;
Liver/drug effects*
;
Humans
;
Cholesterol 7-alpha-Hydroxylase/genetics*
;
Plant Extracts
2.Anti-hepatic fibrosis effect and mechanism of Albiziae Cortex-Tribuli Fructus based on Nrf2/NLRP3/caspase-1 pathway.
Meng-Yuan ZHENG ; Jing-Wen HUANG ; Si-Chen JIANG ; Ze-Yu XIE ; Yi-Xiao XU ; Li YAO
China Journal of Chinese Materia Medica 2025;50(15):4129-4140
This study aims to explore whether Albiziae Cortex-Tribuli Fructus can exert an anti-hepatic fibrosis effect by regulating the nuclear factor E2-related factor 2(Nrf2)/NOD-like receptor protein 3(NLRP3)/cysteine protease-1(caspase-1) pathway and analyze its potential mechanism. In the in vivo experiment, a mouse model of hepatic fibrosis was established by subcutaneous injection of carbon tetrachloride. The levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), collagen type Ⅳ(ColⅣ), laminin(LN), procollagen type Ⅲ(PCⅢ), and hyaluronic acid(HA) in the serum of mice were measured using a fully automated biochemical analyzer and ELISA. Hematoxylin and eosin(HE) and Masson staining were used to observe inflammation and collagen fiber deposition in the liver tissue. Western blot and RT-qPCR were employed to detect the protein and mRNA expression of collagen type Ⅰ(collagen Ⅰ), α-smooth muscle actin(α-SMA), Nrf2, NLRP3, gasdermin D(GSDMD), and caspase-1 in the hepatic tissue. In the in vitro experiment, human hepatic stellate cells(HSC-LX2) were pretreated with Nrf2 agonist or inhibitor, followed by the addition of blank serum, AngⅡ + blank serum, and AngⅡ + Albiziae Cortex-Tribuli Fructus-containing serum for intervention. Western blot was used to detect the protein expression of Nrf2, NLRP3, GSDMD, caspase-1, α-SMA, GSDMD-N, and apoptosis-associated speck-like protein(ASC) in cells. DCFH-DA fluorescence probe was used to detect the cellular ROS levels. The results from the in vivo experiment showed that, compared with the model group, Albiziae Cortex-Tribuli Fructus significantly reduced the serum levels of AST, ALT, ColⅣ, LN, PCⅢ, and HA, reduced the infiltration of inflammatory cells and collagen fiber deposition in the liver tissue, significantly upregulated the protein and mRNA expression of Nrf2 in the liver tissue, and significantly downregulated the protein and mRNA expression of collagen I, α-SMA, NLRP3, GSDMD, and caspase-1 in the liver tissue. The results from the in vitro experiment showed that Nrf2 activation decreased the protein expression of NLRP3, GSDMD, caspase-1, α-SMA, GSDMD-N, ASC, and ROS levels in HSC-LX2, while Nrf2 inhibition showed the opposite trend. Furthermore, Albiziae Cortex-Tribuli Fructus-containing serum directly decreased the expression of the above proteins and ROS levels. In conclusion, Albiziae Cortex-Tribuli Fructus can effectively improve hepatic fibrosis, and its mechanism of action may involve inhibiting pyroptosis through the regulation of the Nrf2/NLRP3/caspase-1 pathway.
Animals
;
NF-E2-Related Factor 2/genetics*
;
Liver Cirrhosis/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 1/genetics*
;
Male
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Plant Extracts
;
Tribulus
3.Therapeutic role of Prunella vulgaris L. polysaccharides in non-alcoholic steatohepatitis and gut dysbiosis.
Meng-Jie ZHU ; Yi-Jie SONG ; Pei-Li RAO ; Wen-Yi GU ; Yu XU ; Hong-Xi XU
Journal of Integrative Medicine 2025;23(3):297-308
OBJECTIVE:
Prunella vulgaris L. has long been used for liver protection according to traditional Chinese medicine theory and has been proven by modern pharmacological research to have multiple potential liver-protective effects. However, its effects on non-alcoholic steatohepatitis (NASH) are currently uncertain. Our study explores the effects of P. vulgaris polysaccharides on NASH and intestinal homeostasis.
METHODS:
An aqueous extract of the dried fruit spikes of P. vulgaris was precipitated in an 85% ethanol solution (PVE85) to extract crude polysaccharides from the herb. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) was administrated to male C57BL/6 mice to establish a NASH animal model. After 4 weeks, the PVE85 group was orally administered PVE85 (200 mg/[kg·d]), while the control group and CDAHFD group were orally administered vehicle for 6 weeks. Quantitative real-time polymerase chain reaction analysis, Western blotting, immunohistochemistry and other methods were used to assess the impact of PVE85 on the liver in mice with NASH. 16S rRNA gene amplicon analysis was employed to evaluate the gut microbiota abundance and diversity in each group to examine alterations at various taxonomic levels.
RESULTS:
PVE85 significantly reversed the course of NASH in mice. mRNA levels of inflammatory mediators associated with NASH and protein expression of hepatic nucleotide-binding leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) were significantly reduced after PVE85 treatment. Moreover, PVE85 attenuated the thickening and cross-linking of collagen fibres and inhibited the expression of fibrosis-related mRNAs in the livers of NASH mice. Intriguingly, PVE85 restored changes in the gut microbiota and improved intestinal barrier dysfunction induced by NASH by increasing the abundance of Actinobacteria and reducing the abundance of Proteobacteria at the phylum level. PVE85 had significant activity in reducing the relative abundance of Clostridiaceae at the family levels. PVE85 markedly enhanced the abundance of some beneficial micro-organisms at various taxonomic levels as well. Additionally, the physicochemical environment of the intestine was effectively improved, involving an increase in the density of intestinal villi, normalization of the intestinal pH, and improvement of intestinal permeability.
CONCLUSION
PVE85 can reduce hepatic lipid overaccumulation, inflammation, and fibrosis in an animal model of CDAHFD-induced NASH and improve the intestinal microbial composition and intestinal structure. Please cite this article as: Zhu MJ, Song YJ, Rao PL, Gu WY, Xu Y, Xu HX. Therapeutic role of Prunella vulgaris L. polysaccharides in non-alcoholic steatohepatitis and gut dysbiosis. J Integr Med. 2025; 2025; 23(3): 297-308.
Animals
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Male
;
Dysbiosis/drug therapy*
;
Mice, Inbred C57BL
;
Gastrointestinal Microbiome/drug effects*
;
Polysaccharides/therapeutic use*
;
Prunella/chemistry*
;
Mice
;
Liver/metabolism*
;
Plant Extracts/therapeutic use*
;
Disease Models, Animal
;
Diet, High-Fat
4.Identification and biomimetic synthesis of iphionanes and cyperanes from Artemisia hedinii and their anti-hepatic fibrosis activity.
Xiaofei LIU ; Xing WANG ; Chunping TANG ; Changqiang KE ; Bintao HU ; Sheng YAO ; Yang YE
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):871-880
Two novel skeleton sesquiterpenoids (1 and 6), along with four new iphionane-type sesquiterpenes (2-5) and six new cyperane-type sesquiterpenes (7-11), were isolated from the whole plant of Artemisia hedinii (A. hedinii). The two novel skeleton compounds (1 and 6) were derived from the decarbonization of iphionane and cyperane-type sesquiterpenes, respectively. Their structures were elucidated through a comprehensive analysis of spectroscopic data, including high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and 1D and 2D nuclear magnetic resonance (NMR) spectra. The absolute configurations were determined using electronic circular dichroism (ECD) spectra, single-crystal X-ray crystallographic analyses, time-dependent density functional theory (TDDFT) ECD calculation, density functional theory (DFT) NMR calculations, and biomimetic syntheses. The biomimetic syntheses of the two novel skeletons (1 and 6) were inspired by potential biogenetic pathways, utilizing a predominant eudesmane-type sesquiterpene (A) in A. hedinii as the substrate. All compounds were evaluated in LX-2 cells for their anti-hepatic fibrosis activity. Compounds 2, 8, and 10 exhibited significant activity in downregulating the expression of α-smooth muscle actin (α-SMA), a protein involved in hepatic fibrosis.
Artemisia/chemistry*
;
Sesquiterpenes/chemical synthesis*
;
Molecular Structure
;
Humans
;
Liver Cirrhosis/genetics*
;
Biomimetics
;
Plant Extracts/pharmacology*
5.Anti-inflammatory and hepatoprotective triterpenoids from the traditional Mongolian medicine Gentianopsis barbata.
Huizhen CHENG ; Huan LIU ; Xiaoyu QI ; Yuzhou FAN ; Zhongzhu YUAN ; Yuanliang XU ; Yanchun LIU ; Yan LIU ; Kai GUO ; Shenghong LI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1111-1121
Gentianopsis barbata (G. barbata) represents a significant plant species with considerable ornamental and medicinal value in China. This investigation sought to elucidate the primary constituents within the plant and investigate their pharmacological properties. Fifty triterpenoids (1-50), including nine previously undescribed compounds (1, 2, 7, 10, 20, 28, 29, 37, and 41) were isolated and characterized from the whole plants of G. barbata. Notably, compounds 1 and 2 exhibited the novel 3,4;9,10-diseco-24-homo-cycloartane triterpenoid skeleton. The isolated triterpenoids demonstrated substantial anti-inflammatory activity through inhibition of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) cytokine secretion in LPS-induced RAW264.7 macrophages, and hepatoprotective effects by preventing tert-butyl hydroperoxide (t-BHP)-induced oxidative injury in HepG2 cells. These results demonstrate both the presence of diverse triterpenoids in G. barbata and their therapeutic potential for inflammatory and hepatic conditions, providing scientific evidence supporting the clinical application of this traditional Mongolian medicinal plant.
Triterpenes/isolation & purification*
;
Mice
;
Anti-Inflammatory Agents/isolation & purification*
;
Animals
;
Humans
;
RAW 264.7 Cells
;
Hep G2 Cells
;
Interleukin-6/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Medicine, Mongolian Traditional
;
Macrophages/immunology*
;
Protective Agents/isolation & purification*
;
Liver/drug effects*
;
Gentianaceae/chemistry*
;
Plant Extracts/chemistry*
;
Molecular Structure
6.Comparative study on metabolites in rat liver microsomes, urine, feces and bile between Shuganning Injection and Scutellariae Radix extract.
Feng HE ; Yang ZHOU ; Yue PENG ; Lin ZHENG ; Ling WANG ; Yong HUANG ; Ming-Yan CHI
China Journal of Chinese Materia Medica 2024;49(23):6500-6511
This study aims to compare the metabolic differences of baicalin and its analogues between Shuganning Injection and Scutellariae Radix extract. Twelve SD rats were randomly divided into a Shuganning Injection group and a Scutellariae Radix extract group, with 6 rats in each group. Their liver microsomes were incubated with the drugs, and then the samples were collected. Ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) was used to analyze the prototype components and metabolites of the drugs in liver microsomes of each group. Another 12 SD rats were also divided into a Shuganning Injection group and a Scutellariae Radix extract group, with 6 rats in each group. The rats were administrated with 4.2 mL·kg~(-1) Shuganning Injection or Scutellariae Radix extract by tail vein injection. After 48 h, the rat urine, feces, and bile were collected, and UPLC-Q-Exactive Orbitrap-MS was used to analyze the prototype components and metabolites in each biological sample. The results showed that 5 prototype components and 8 metabolites of Shuganning Injection and Scutellariae Radix extract were identified in liver microsomes. A total of 5 prototype components were identified in rat urine, feces, and bile separately. Fifteen metabolites were identified in the urine, 9 metabolites in the feces, and 12 metabolites in the bile. The differences of metabolic pathways and number of metabolites of baicalin were compared between Shuganning Injection and Scutellariae Radix extract. For both Shuganning Injection and Scutellariae Radix extract, the metabolites of baicalin or baicalein in rat liver microsomes, urine, bile, and feces were mainly formed glucuronic acid conjugates, and there were a small amount of glucose conjugates and methylation products. Differences were found in the number and types of metabolites of baicalin in urine samples between Shuganning Injection and Scutellariae Radix extract, indicating that differences existed in metabolism between the two. This suggests that the other components in the formula lead to changes of metabolites in vivo.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Microsomes, Liver/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Feces/chemistry*
;
Scutellaria baicalensis/chemistry*
;
Male
;
Bile/chemistry*
;
Flavonoids/metabolism*
;
Urine/chemistry*
;
Chromatography, High Pressure Liquid
;
Mass Spectrometry
;
Plant Extracts
7.Hepatoprotective Effect of Camel Thorn Polyphenols in Concanavalin A-Induced Hepatitis in Mice.
Nageh Ahmed EL-MAHDY ; Thanaa Ahmed EL-MASRY ; Ahmed Mahmoud EL-TARAHONY ; Fatemah A ALHERZ ; Enass Youssef OSMAN
Chinese journal of integrative medicine 2024;30(12):1090-1100
OBJECTIVES:
To explore the prophylactic and therapeutic effects of Alhagi maurorum ethanolic extract (AME) in concanavalin A (Con A)-induced hepatitis (CIH) as well as possible underlying mechanisms.
METHODS:
Polyphenols in AME were characterized using high performance liquid chromatography (HPLC). Swiss albino mice were divided into 4 groups. Normal group received intravenous phosphate-buffered saline (PBS); Con A group received 40 mg/kg intravenous Con A. Prophylaxis group administered 300 mg/(kg·d) AME orally for 5 days before Con A intervention. Treatment group received intravenous Con A then administered 300 mg/kg AME at 30 min and 3 h after Con A intervention. After 24 h of Con A injection, hepatic injury, oxidative stress, and inflammatory mediators were assessed. Histopathological examination and markers of apoptosis, inflammation, and CD4+ cell infiltration were also investigated.
RESULTS:
HPLC analysis revealed that AME contains abundant polyphenols with pharmacological constituents, such as ellagic acid, gallic acid, ferulic acid, methylgallate, and naringenin. AME alleviated Con A-induced hepatic injury, as manifested by a significant reduction in alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase (P<0.01). Additionally, the antioxidant effect of AME was revealed by a significant reduction in oxidative stress markers (nitric oxide and malondialdehyde) and restored glutathione (P<0.01). The levels of proinflammatory cytokines (tumor necrosis factor-α, interferon-γ, and interleukin-6) and c-Jun N-terminal kinase (JNK) activity were reduced (P<0.01). Histopathological examination of liver tissue showed that AME significantly ameliorated necrotic and inflammatory lesions induced by Con A (P<0.01). Moreover, AME reduced the expression of nuclear factor kappa B, pro-apoptotic protein (Bax), caspase-3, and CD4+ T cell hepatic infiltration (P<0.01). The expression of anti-apoptotic protein Bcl-2 was increased (P<0.01).
CONCLUSION
AME has hepatoprotective and ameliorative effects in CIH mice. These beneficial effects are likely due to the anti-inflammatory, antioxidant, and anti-apoptotic effects of the clinically important polyphenolic content. AME could be a novel and promising hepatoprotective agent for managing immune-mediated hepatitis.
Animals
;
Concanavalin A
;
Mice
;
Polyphenols/pharmacology*
;
Liver/drug effects*
;
Plant Extracts/therapeutic use*
;
Camelus
;
Oxidative Stress/drug effects*
;
Male
;
Protective Agents/pharmacology*
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Apoptosis/drug effects*
;
Hepatitis/pathology*
;
Antioxidants/pharmacology*
;
CD4-Positive T-Lymphocytes/drug effects*
;
Inflammation Mediators/metabolism*
8.Blueberry attenuates liver injury in metabolic dysfunction-associated liver disease by promoting the expression of mitofilin/Mic60 in human hepatocytes and inhibiting the production of superoxide.
Ya REN ; Houmin FAN ; Lili ZHU ; Tao LIN ; Tingting REN
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):318-324
Objective To study the effect and mechanism of blueberry on regulating the mitochondrial inner membrane protein mitofilin/Mic60 in an in vitro model of metabolic dysfunction-associated liver disease (MAFLD). Methods L02 human hepatocytes were induced by free fatty acids (FFA) to establish MAFLD cell model. A normal group, a model group, an 80 μg/mL blueberry treatment group, a Mic60 short hairpin RNA (Mic60 shRNA) transfection group, and Mic60 knockdown combined with an 80 μg/mL blueberry treatment group were established. The intracellular lipid deposition was observed by oil red O staining, and the effect of different concentrations of blueberry pulp on the survival rate of L02 cells treated with FFA was measured by MTT assay. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) contents were measured by visible spectrophotometry. The expression of reactive oxygen species (ROS) in hepatocytes was observed by fluorescence microscopy, and the mRNA and protein expression of Mic60 were detected by real-time quantitative PCR and Western blot analysis, respectively. Results After 24 hours of FFA stimulation, a large number of red lipid droplets in the cytoplasm of L02 cells was observed, and the survival rate of L02 cells treated with 80 μg/mL blueberry was higher. The results of ALT, AST, TG, TC, MDA and the fluorescence intensity of ROS in blueberry treated group were lower than those in model group, while the levels of SOD, GSH, Mic60 mRNA and protein in blueberry treated group were higher than those in model group. Conclusion Blueberry promotes the expression of Mic60, increases the levels of SOD and GSH in hepatocytes, and reduces the production of ROS, thus alleviating the injury of MAFLD hepatocytes and regulating the disorder of lipid metabolism.
Humans
;
Blueberry Plants/chemistry*
;
Hepatocytes/metabolism*
;
Liver/metabolism*
;
Liver Diseases/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/metabolism*
;
Superoxides/metabolism*
;
Mitochondrial Membranes/metabolism*
;
Mitochondrial Proteins/metabolism*
;
Plant Extracts/pharmacology*
9.Spectrum-effect relationship of total anthraquinone extract of Cassia seeds against fluorouracil-induced liver injury in mice.
Heng WANG ; Mengqi LI ; Shenxing LI ; Jinggan SHI ; Li HUANG ; Suoting CHENG ; Chuncai ZOU ; Haiyan YAN
Journal of Southern Medical University 2023;43(5):825-831
OBJECTIVE:
To investigate the spectrum-effect relationship between the total anthraquinone extract of Cassia seeds and fluorouracil (5-Fu)-induced liver injury in mice and identify the effective components in the extract.
METHODS:
A mouse model of liver injury was established by intraperitoneal injection of 5-Fu, with bifendate as the positive control. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and myeloperoxidase (MPO), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) in the liver tissue were detected to investigate the effect of the total anthraquinone extract of Cassia seeds (0.4, 0.8 and 1.6 g/kg) on liver injury induced by 5-Fu. HPLC fingerprints of 10 batches of the total anthraquinone extracts were established to analyze the spectrum- effectiveness of the extract against 5- Fu- induced liver injury in mice and screen the effective components using the grey correlation method.
RESULTS:
The 5- Fu- treated mice showed significant differences in liver function parameters from the normal control mice (P < 0.05), suggesting successful modelling. Compared with those in the model group, serum ALT and AST activities were decreased, SOD and T- AOC activities significantly increased, and MPO level was significantly lowered in the mice treated with the total anthraquinone extract (all P < 0.05). HPLC fingerprints of the 31 components in the total anthraquinone extract of Cassia seeds showed good correlations with the potency index of 5-Fu-induced liver injury but with varying correlation strengths. The top 15 components with known correlations included aurantio-obtusina (peak 6), rhein (peak 11), emodin (peak 22), chrysophanol (peak 29) and physcion (peak 30).
CONCLUSION
The effective components in the total anthraquinone extract of Cassia seeds, including aurantio-obtusina, rhein, emodin, chrysophanol, and physcion, are coordinated to produce protective effects against 5-Fu-induced liver injury in mice.
Animals
;
Mice
;
Emodin
;
Cassia
;
Chemical and Drug Induced Liver Injury, Chronic
;
Anthraquinones
;
Antioxidants
;
Fluorouracil/adverse effects*
;
Plant Extracts/pharmacology*
10.Correlation between drug-induced liver injury in rats caused by Xianling Gubao oral preparation and extraction process.
Xi-Yi PENG ; Lin ZHANG ; Shu-Wei YU ; Yu-Qi ZHAI ; Zhao-Juan GUO
China Journal of Chinese Materia Medica 2023;48(24):6645-6652
In light of the liver injury risk associated with the oral administration of Xianlin Gubao oral preparation, this study compared the differences in liver injury induced by two different extraction processes in rats and explored the correlation between hepatotoxicity and extraction process from the perspective of the differences in the content of the relevant components. Thirty male Sprague-Dawley(SD) rats were randomly divided into a normal group, tablet extract groups of different doses, and capsule extract groups of different doses, with 6 rats in each group. Each group received continuous oral administration for 4 weeks. The assessment of liver injury caused by different extracts was conducted by examining rat body weight, liver function blood biochemical indicators, liver coefficient, and liver pathological changes. In addition, a high-performance liquid chromatography(HPLC) method was established to simultaneously determine the content of icariin, baohuoside I, and bakuchiol in the extracts to compare the differences in the content of these three components under the two extraction processes. The results showed that both extracts caused liver injury in rats. Compared with the normal group, the tablet extract groups, at the studied dose, led to slow growth in body weight, a significant increase in triglyceride levels(P<0.05), a significant decrease in liver-to-brain ratio(P<0.05), and the appearance of hepatic steatosis. The capsule extract groups, at the studied dose, resulted in slow growth in body weight, a significant increase in aspartate aminotransferase levels(P<0.05), a significant decrease in body weight, liver weight, and liver-to-brain ratio(P<0.05), and the presence of hepatic steatosis and inflammatory cell infiltration. In comparison, the capsule extraction process had a higher risk of liver injury. Furthermore, based on the completion of the liquid chromatography method, the content of icariin and baohuoside Ⅰ in the capsule extract groups was 0.83 and 0.81 times that in the tablet extract groups, respectively, while the bakuchiol content in the capsule extract group was 29.80 times that in the tablet extract groups, suggesting that the higher risk of liver injury associated with the capsule extraction process may be due to its higher bakuchiol content. In summary, the differences in rat liver injury caused by the two extracts are closely related to the extraction process. This should be taken into consideration in the formulation production and clinical application.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Liver/pathology*
;
Chemical and Drug Induced Liver Injury/pathology*
;
Fatty Liver
;
Tablets
;
Body Weight
;
Plant Extracts
;
Phenols

Result Analysis
Print
Save
E-mail