1.Liver fibrosis inhibits lethal injury through D-galactosamine/lipopolysaccharide-induced necroptosis.
Lu LI ; Li BAI ; Su Jun ZHENG ; Yu CHEN ; Zhong Ping DUAN
Chinese Journal of Hepatology 2022;30(4):413-418
Objective: To explore the new mechanism of liver fibrosis through D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced necroptosis as an entry point to inhibit lethal injury. Methods: The carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis was established. At 6 weeks of fibrosis, the mice were challenged with a lethal dose of D-GalN/LPS, and the normal mice treated with the same treatment were used as the control. The experiment was divided into four groups: control group (Control), acute injury group (D-GalN/LPS), liver fibrosis group (Fib), and liver fibrosis + acute challenge group (Fib + D-GalN/LPS). Quantitative PCR and immunofluorescence were used to analyze the expression of necroptosis key signal molecules RIPK1, RIPK3, MLKL and/or P-MLKL in each group. Normal mice were treated with inhibitors targeting key signaling molecules of necroptosis, and then given an acute challenge. The inhibitory effect of D-GalN/LPS-induced-necroptosis on acute liver injury was evaluated according to the changes in transaminase levels and liver histology. Liver fibrosis spontaneous ablation model was established, and then acute challenge was given. Necroptosis key signal molecules expression was analyzed in liver tissue of mice in each group and compared by immunohistochemistry. The differences between groups were compared with t-test or analysis of variance. Results: Quantitative PCR and immunofluorescence assays result showed that D-GalN/LPS-induced significant upregulation of RIPK1, RIPK3, MLKL and/or P-MLKL. Necroptosis key signal molecules inhibition had significantly reduced D-GalN/LPS-induced liver injury, as manifested by markedly reduced serum ALT and AST levels with improvement in liver histology. Necroptosis signaling molecules expression was significantly inhibited in fibrotic livers even under acute challenge conditions. Additionally, liver fibrosis with gradual attenuation of fibrotic ablation had inhibited D-GalN/LPS-induced necroptosis. Conclusion: Liver fibrosis may protect mice from acute lethal challenge injury by inhibiting D-GalN/LPS-induced necroptosis.
Animals
;
Chemical and Drug Induced Liver Injury/pathology*
;
Galactosamine/adverse effects*
;
Lipopolysaccharides/adverse effects*
;
Liver/pathology*
;
Liver Cirrhosis/pathology*
;
Liver Failure, Acute/chemically induced*
;
Mice
;
Necroptosis
2.Hepcidin-orchestrated Hemogram and Iron Homeostatic Patterns in Two Models of Subchronic Hepatic injury.
Ibtsam GHEITH ; Abubakr EL-MAHMOUDY
Biomedical and Environmental Sciences 2019;32(3):153-161
OBJECTIVE:
This study was designed to evaluate hematological disorders and the orchestrating roles of hepcidin and IL-6 in rat models of thioacetamide (TAA) and carbon tetrachloride (CCl4) hepatotoxicity.
METHODS:
Rats were intraperitoneally injected with TAA (10 mg/100 g rat weight dissolved in isosaline) or CCl4 (100 μL/100 g rat weight diluted as 1:4 in corn oil) twice weekly for eight consecutive weeks to induce subchronic liver fibrosis. Blood and tissue samples were collected and analyzed.
RESULTS:
CCl4 but not TAA significantly decreased the RBCs, Hb, PCV, and MCV values with minimal alterations in other erythrocytic indices. Both hepatotoxins showed leukocytosis, granulocytosis, and thrombocytopenia. By the end of the experiment, the erythropoietin level increased in the CCl4 model. The serum iron, UIBC, TIBC, transferrin saturation%, and serum transferrin concentration values significantly decreased, whereas that of ferritin increased in the CCl4 model. TAA increased the iron parameters toward iron overload. RT-PCR analysis revealed increased expression of hepatic hepcidin and IL-6 mRNAs in the CCl4 model and suppressed hepcidin expression without significant effect on IL-6 in the TAA model.
CONCLUSION
These data suggest differences driven by hepcidin and IL-6 expression between CCl4 and TAA liver fibrosis models and are of clinical importance for diagnosis and therapeutics of liver diseases.
Animals
;
Blood Chemical Analysis
;
Carbon Tetrachloride
;
toxicity
;
Hepcidins
;
pharmacology
;
Injections, Intraperitoneal
;
Interleukin-6
;
pharmacology
;
Iron
;
blood
;
metabolism
;
Leukocytosis
;
chemically induced
;
therapy
;
Liver Cirrhosis
;
chemically induced
;
therapy
;
Male
;
Rats
;
Thioacetamide
;
toxicity
;
Thrombocytopenia
;
chemically induced
;
therapy
;
Transferrin
;
metabolism
3.Effect of Yuyin Ruangan Granule on TGF-β1 expression in hepatic fibrosis rats.
Zhi-Wang WANG ; Xiao-Yan FU ; Xiao-Li CHENG ; Xiao-Ying BAO ; Xue-Feng LIU ; Hai-Jing DUAN
Chinese Journal of Applied Physiology 2018;34(2):169-172
OBJECTIVES:
To observe the preventive and therapeutic action of Yuyin Ruangan Granule (YRG, Traditional Chinese Medicine) in hepatic fibrosis rats model and its effect on transforming growth factor-β1 (TGF-β1) expression.
METHODS:
The Wistar rats were randomly divided into 6 group (=10), and the model of hepatic fibrosis rats was established by subcutaneous injected with carbon tetrachloride (CCL4), fed on high-fat diet and 20% ethanol for 6 weeks, to survey the effect and mechanism of YRG preventing hypatic fibrosis by detecting liver function (the activity of alanine aminotransferase(ALT), aspartate aminotransferase(AST), etc.) of liver fibrosis rats, liver fibrosis indicators (hyaluronic acid, Ⅲ procollagen, type IV collagen, laminin and hepatic pathology, etc.), and TGF-β1 expression in liver tissue after 6 weeks treated with YRG through intragastric administration (q. d.).
RESULTS:
At the 7 week, fibrotic lesions appears distinctly in liver tissue of model group compared with control group (<0.01), YRG of 6.2~28.8 g/kg could significantly decrease hepatic index, ALT and AST activities, content of hyaluronic acid(HA), Ⅲ procollagen (PCⅢ), type Ⅳ collagen(C-Ⅳ), laminin (LN) in serum, relieve liver fibrosis pathological changes and inhibit TGF-β1 expression in fibrotic liver tissue (<0.05, <0.01).
CONCLUSIONS
YRG has significantly preventive effects on liver fibrosis rats model, and it may be one of its mechanisms to inhibit expression of TGF-β1.
Animals
;
Carbon Tetrachloride
;
Drugs, Chinese Herbal
;
pharmacology
;
Liver
;
drug effects
;
metabolism
;
Liver Cirrhosis
;
chemically induced
;
drug therapy
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Transforming Growth Factor beta1
;
metabolism
4.Sasa veitchii extract protects against carbon tetrachloride-induced hepatic fibrosis in mice.
Hiroki YOSHIOKA ; Tsunemasa NONOGAKI ; Shiori FUKAYA ; Yoshimi ICHIMARU ; Akito NAGATSU ; Masae YOSHIKAWA ; Hirohisa FUJII ; Makoto NAKAO
Environmental Health and Preventive Medicine 2018;23(1):49-49
BACKGROUND:
The current study aimed to investigate the hepatoprotective effects of Sasa veitchii extract (SE) on carbon tetrachloride (CCl)-induced liver fibrosis in mice.
METHODS:
Male C57BL/6J mice were intraperitoneally injected with CCl dissolved in olive oil (1 g/kg) twice per week for 8 weeks. SE (0.1 mL) was administered orally once per day throughout the study, and body weight was measured weekly. Seventy-two hours after the final CCl injection, mice were euthanized and plasma samples were collected. The liver and kidneys were collected and weighed.
RESULTS:
CCl administration increased liver weight, decreased body weight, elevated plasma alanine aminotransferase, and aspartate aminotransferase and increased liver oxidative stress (malondialdehyde and glutathione). These increases were attenuated by SE treatment. Overexpression of tumor necrosis factor-α was also reversed following SE treatment. Furthermore, CCl-induced increases in α-smooth muscle actin, a marker for hepatic fibrosis, were attenuated in mice treated with SE. Moreover, SE inhibited CCl-induced nuclear translocation of hepatic nuclear factor kappa B (NF-κB) p65 and phosphorylation of mitogen-activated protein kinase (MAPK).
CONCLUSION
These results suggested that SE prevented CCl-induced hepatic fibrosis by inhibiting the MAPK and NF-κB signaling pathways.
Animals
;
Carbon Tetrachloride
;
toxicity
;
Liver Cirrhosis
;
chemically induced
;
drug therapy
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Plant Extracts
;
pharmacology
;
Protective Agents
;
pharmacology
;
Random Allocation
;
Sasa
;
chemistry
5.Doxazosin Treatment Attenuates Carbon Tetrachloride-Induced Liver Fibrosis in Hamsters through a Decrease in Transforming Growth Factor beta Secretion.
Martin Humberto MUNOZ-ORTEGA ; Raul Wiliberto LLAMAS-RAMIREZ ; Norma Isabel ROMERO-DELGADILLO ; Tania Guadalupe ELIAS-FLORES ; Edgar DE JESUS TAVARES-RODRIGUEZ ; Maria DEL ROSARIO CAMPOS-ESPARZA ; Daniel CERVANTES-GARCIA ; Luis MUNOZ-FERNANDEZ ; Martin GERARDO-RODRIGUEZ ; Javier VENTURA-JUAREZ
Gut and Liver 2016;10(1):101-108
BACKGROUND/AIMS: The development of therapeutic strategies for the treatment of cirrhosis has become an important focus for basic and clinical researchers. Adrenergic receptor antagonists have been evaluated as antifibrotic drugs in rodent models of carbon tetrachloride (CCl4)-induced cirrhosis. The aim of the present study was to evaluate the effects of carvedilol and doxazosin on fibrosis/cirrhosis in a hamster animal model. METHODS: Cirrhotic-induced hamsters were treated by daily administration of carvedilol and doxazosin for 6 weeks. Hepatic function and histological evaluation were conducted by measuring biochemical markers, including total bilirubin, aspartate aminotransferase, alanine aminotransferase and albumin, and liver tissue slices. Additionally, transforming growth factor beta (TGF-beta) immunohistochemistry was analyzed. RESULTS: Biochemical markers revealed that hepatic function was restored after treatment with doxazosin and carvedilol. Histological evaluation showed a decrease in collagen type I deposits and TGF-beta-secreting cells. CONCLUSIONS: Taken together, these results suggest that the decrease in collagen type I following treatment with doxazosin or carvedilol is achieved by decreasing the profibrotic activities of TGF-beta via the blockage of alpha1- and beta-adrenergic receptor. Consequently, a diminution of fibrotic tissue in the CCl4-induced model of cirrhosis is achieved.
Adrenergic alpha-1 Receptor Antagonists/*pharmacology
;
Alanine Transaminase/blood
;
Animals
;
Aspartate Aminotransferases/blood
;
Bilirubin/blood
;
Carbazoles/*pharmacology
;
Carbon Tetrachloride
;
Collagen Type I/drug effects/metabolism
;
Cricetinae
;
Doxazosin/*pharmacology
;
Liver/metabolism/pathology
;
Liver Cirrhosis/blood/chemically induced/*drug therapy
;
Liver Function Tests
;
Propanolamines/*pharmacology
;
Serum Albumin/analysis
;
Transforming Growth Factor beta/blood/*drug effects
6.Novel matrine derivative MD-1 attenuates hepatic fibrosis by inhibiting EGFR activation of hepatic stellate cells.
Yi FENG ; Hai-Yan YING ; Ying QU ; Xiao-Bo CAI ; Ming-Yi XU ; Lun-Gen LU
Protein & Cell 2016;7(9):662-672
Matrine (MT), the effective component of Sophora flavescens Ait, has been shown to have anti-inflammation, immune-suppressive, anti-tumor, and anti-hepatic fibrosis activities. However, the pharmacological effects of MT still need to be strengthened due to its relatively low efficacy and short half-life. In the present study, we report a more effective thio derivative of MT, MD-1, and its inhibitory effects on the activation of hepatic stellate cells (HSCs) in both cell culture and animal models. Cytological experiments showed that MD-1 can inhibit the proliferation of HSC-T6 cells with a half-maximal inhibitory concentration (IC50) of 62 μmol/L. In addition, MD-1 more strongly inhibits the migration of HSC-T6 cells compared to MT and can more effectively induce G0/G1 arrest and apoptosis. Investigating the biological mechanisms underlying anti-hepatic fibrosis in the presence of MD-1, we found that MD-1 can bind the epidermal growth factor receptor (EGFR) on the surface of HSC-T6 cells, which can further inhibit the phosphorylation of EGFR and its downstream protein kinase B (Akt), resulting in decreased expression of cyclin D1 and eventual inhibition of the activation of HSC-T6 cells. Furthermore, in rats with dimethylnitrosamine (DMN)-induced hepatic fibrosis, MD-1 slowed the development and progression of hepatic fibrosis, protecting hepatic parenchymal cells and improving hepatic functions. Therefore, MD-1 is a potential drug for anti-hepatic fibrosis.
Alkaloids
;
pharmacology
;
Animals
;
Cell Line
;
Cyclin D1
;
metabolism
;
Dimethylnitrosamine
;
toxicity
;
Enzyme Activation
;
drug effects
;
ErbB Receptors
;
metabolism
;
G1 Phase Cell Cycle Checkpoints
;
drug effects
;
Hepatic Stellate Cells
;
metabolism
;
pathology
;
Liver Cirrhosis
;
chemically induced
;
metabolism
;
pathology
;
prevention & control
;
Phosphorylation
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Quinolizines
;
pharmacology
;
Rats
7.Thalidomide Accelerates the Degradation of Extracellular Matrix in Rat Hepatic Cirrhosis via Down-Regulation of Transforming Growth Factor-beta1.
Peng LV ; Qingshun MENG ; Jie LIU ; Chuanfang WANG
Yonsei Medical Journal 2015;56(6):1572-1581
PURPOSE: The degradation of the extracellular matrix has been shown to play an important role in the treatment of hepatic cirrhosis. In this study, the effect of thalidomide on the degradation of extracellular matrix was evaluated in a rat model of hepatic cirrhosis. MATERIALS AND METHODS: Cirrhosis was induced in Wistar rats by intraperitoneal injection of carbon tetrachloride (CCl4) three times weekly for 8 weeks. Then CCl4 was discontinued and thalidomide (100 mg/kg) or its vehicle was administered daily by gavage for 6 weeks. Serum hyaluronic acid, laminin, procollagen type III, and collagen type IV were examined by using a radioimmunoassay. Matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and alpha-smooth muscle actin (alpha-SMA) protein in the liver, transforming growth factor beta1 (TGF-beta1) protein in cytoplasm by using immunohistochemistry and Western blot analysis, and MMP-13, TIMP-1, and TGF-beta1 mRNA levels in the liver were studied using reverse transcriptase polymerase chain reaction. RESULTS: Liver histopathology was significantly better in rats given thalidomide than in the untreated model group. The levels of TIMP-1 and TGF-beta1 mRNA and protein expressions were decreased significantly and MMP-13 mRNA and protein in the liver were significantly elevated in the thalidomide-treated group. CONCLUSION: Thalidomide may exert its effects on the regulation of MMP-13 and TIMP-1 via inhibition of the TGF-beta1 signaling pathway, which enhances the degradation of extracellular matrix and accelerates the regression of hepatic cirrhosis in rats.
Actins
;
Animals
;
Carbon Tetrachloride/toxicity
;
Collagen Type III/metabolism
;
Down-Regulation
;
Extracellular Matrix/metabolism
;
Immunohistochemistry
;
Immunosuppressive Agents/*pharmacology
;
Liver Cirrhosis, Experimental/chemically induced/*metabolism/pathology/*prevention & control
;
Male
;
RNA, Messenger/analysis/metabolism
;
Rats
;
Rats, Wistar
;
Thalidomide/*pharmacology
;
Tissue Inhibitor of Metalloproteinase-1/biosynthesis/*drug effects
;
Transcription Factor RelA/biosynthesis/drug effects
;
Transforming Growth Factor beta1/biosynthesis/*drug effects
;
Transforming Growth Factors/metabolism
8.Reversal of liver fibrosis through AG490 inhibitor-mediated inhibition of the TGFbeta1-STAT3 pathway.
Shengzheng LUO ; Zhenghong LI ; Mingyi XU ; Qingqing ZHANG ; Ying QU ; Lungen LU
Chinese Journal of Hepatology 2015;23(12):939-943
OBJECTIVETo investigate the role of TGF-beta1 and STAT3 signaling in liver fibrosis using a rat model system and to determine the therapeutic mechanism of AG490 in relation to this signaling pathway.
METHODSRats were randomly divided into a control group and DENA-induced liver fibrosis model group, and then subdivided into AG490 treatment groups. During fibrosis development, liver tissue samples were collected at different time points (0, 4 and 8 weeks) and evaluated according to the Scheuer scoring system. Expression of STAT3, TGFbeta1, alpha-SMA, E-cadherin, MMP2 and TIMP1 was measured by PCR (mRNA) and immunohistochemistry and western blotting (protein).
RESULTSIncreasing degrees of inflammation and fibrosis were observed in liver tissues of DENA-treated rats throughout model establishment. The mRNA expression of TGFbeta1 and STAT3 was significantly increased in DENA-induced rats with advanced fibrosis (AF) compared to those with early fibrosis (EF) (P = 0.034 and P = 0.012 respectively). The protein expression of TGF-beta1, phospho-Smad2, alpha-SMA, E-cadherin, STAT3 and phospho-STAT3 was significantly increased in DENA-induced rats with AF compared to the unmodeled control group (P = 0.048, P = 0.003, P = 0.002, P = 0.028, P = 0.009 and P = 0.039). The protein expression of E-cadherin was lower in the DENA-induced rats with AF than in those with EF (P = 0.026). STAT3 and TGF-beta1 co-expression was detected in AF tissues. DENA-induced AG490-treated rats with AF showed substantially lower protein expression of STAT3, TGF-beta1, MMP2 and TIMP1 compared to DENA-induced untreated rats with AF (P = 0.006, P = 0.018, P = 0.010 and P = 0.005); in addition, the degrees of fibrosis and inflammation were also greatly reduced in the DENA-induced AG490-treated rats with AF compared to DENA-induced untreated rats with AF (P = 0.042 and P = 0.021). Conclusions STAT3 signal transduction may regulate the TGF-beta1 pathway and affect liver fibrosis, especially in the advanced phase. AG490 can inhibit TGFbeta1-STAT3 signaling, resulting in reversal of liver fibrosis.
Animals ; Disease Models, Animal ; Liver Cirrhosis ; chemically induced ; metabolism ; Rats ; Rats, Sprague-Dawley ; STAT3 Transcription Factor ; metabolism ; Signal Transduction ; Transforming Growth Factor beta1 ; metabolism ; Tyrphostins ; pharmacology
9.Inhibitory effect of flavonoids from Glycyrrhiza uralensis on expressions of TGF-β1 and Caspase-3 in thioacetamide-induced hepatic fibrosis in rats.
Jing JING ; Jin-ying ZHAO ; Bing HUA ; Min-qiu XUE ; Ya-fei ZHU ; Gang LIU ; Ying-hua WANG ; Xiao-dong PENG
China Journal of Chinese Materia Medica 2015;40(15):3034-3040
OBJECTIVETo study the inhibitory effect of flavonoids from Glycyrrhiza uralensis on thioacetamide-induced chonic hepatic fibrosis in rats and the effect on the protein expressions of transforming growth factor-β1 (TGF-β1) and Caspase-3 in livers.
METHODMale Sprague-Dawley rats were randomly divided into totally seven groups: the normal control group, the model group, LF groups s (400, 200, 100, 50 mg · kg(-1) · d(-1)) and the silymarin positive control group (30 mg · kg(-1) · d(-1)). The hepatic fibrosis model was induced in the rats through intraperitoneal injection with 3% thioacetamide (TAA) at a dose of 150 mg · kg(-1) body weight twice a week for 12 weeks. During the course, the control group and the model group were orally administered with saline (1 mL · kg(-1) · d(-1)). After the modeling and drug intervention, the pathologic changes and fibrosis in liver tissues were observed by HE staining and Masson's Trichrome staining. The serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and liver hydroxyproline (HYP) contents were assayed by biochemical process. The serum hyaluronic acid (HA) was assessed by radioimmunoassay. In addition, the protein expressions of liver TGF-β1 and Caspase-3 were examined by immunohistochemical method. The mRNA expression of TGF-β1 in hepatic tissues was examined by quantitative Real-time PCR analysis.
RESULTCompared with the model group, flavonoids can protect the integrity of the structure of liver tissues, significantly reduce the hepatic cell degeneration and necrosis and the proliferation of fibrous tissues, notably reduce the serum AST, ALT, ALP and HA and HYP in hepatic tissues and down-regulate the protein expressions of liver TGF-β1 and Caspase-3 and the mRNA expression of TGF-β1 in hepatic tissues.
CONCLUSIONThe licorice flavonoids can resist the thioacetamide-induced hepatic fibrosis in rats. Its mechanism may be related to the down-regulation of the protein expressions of TGF-β1 and Caspase-3.
Animals ; Caspase 3 ; analysis ; Flavonoids ; pharmacology ; Glycyrrhiza uralensis ; chemistry ; Hyaluronic Acid ; blood ; Liver ; pathology ; Liver Cirrhosis, Experimental ; chemically induced ; metabolism ; prevention & control ; Male ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley ; Thioacetamide ; Transforming Growth Factor beta1 ; analysis ; genetics
10.Effects of Hemerocallis citrine baroni flavonids on CCl4-induced liver fibrosis of rats.
Nan SHEN ; Xiao-dong HUANG ; Zhi-wei LI ; Yan-chun WANG ; Ling QI ; Ying AN ; Ting-ting LIU
Acta Pharmaceutica Sinica 2015;50(5):547-551
This study is designed to explore the possible effects of Hemerocallis citrina baroni flavonids (HCBF) on liver fibrosis induced by CCl4 in rats. The liver fibrosis model was induced by CCl4, and HCBF were administered by gastric perfusion at 25 and 50 mg x kg(-1) qd for 50 days, while the contents of alanine transaminase (ALT), aspartate aminotransferase (AST), gamma glutamyl transpeptidase (GGT), alkaline phosphatase (ALP), superoxide dismutase (SOD), maleic dialdehyde (MDA) and transforming growth factor-β1 (TGF-β1) were measured and the contents of PINP were measured in liver tissue, and the expression of TGF-β1 were observed by immunohistochemisty and Western blot. The pathological changes of liver tissue were examined by HE. The results showed that HCBF (25, 50 mg x kg(-1)) improved the liver function significantly through reducing the level of ALT, AST, GGT and ALP (P < 0.05 or P < 0.01), and increasing the content of SOD (P < 0.01), while reducing the content of MDA (P < 0.05 or P < 0.01), the expression of TGF-β1 (P < 0.05) and the content of PINP (P < 0.05). The results suggest that HCBF (25, 50 mg x kg(-1)) may inhibit the liver injury induced by CCl4 by decreasing the oxidative stress.
Alanine Transaminase
;
metabolism
;
Alkaline Phosphatase
;
metabolism
;
Animals
;
Aspartate Aminotransferases
;
metabolism
;
Carbon Tetrachloride
;
Drugs, Chinese Herbal
;
pharmacology
;
Flavonoids
;
pharmacology
;
Hemerocallis
;
chemistry
;
Liver Cirrhosis
;
chemically induced
;
drug therapy
;
Malondialdehyde
;
metabolism
;
Oxidative Stress
;
drug effects
;
Plant Extracts
;
pharmacology
;
Rats
;
Superoxide Dismutase
;
metabolism
;
Transforming Growth Factor beta1
;
metabolism
;
gamma-Glutamyltransferase
;
metabolism

Result Analysis
Print
Save
E-mail