1.Clinical analysis of liver dysfunction induced by SHR-1210 alone or combined with apatinib and chemotherapy in patients with advanced esophageal squamous cell carcinoma.
Ling QI ; Bo ZHANG ; Yun LIU ; Lan MU ; Qun LI ; Xi WANG ; Jian Ping XU ; Xing Yuan WANG ; Jing HUANG
Chinese Journal of Oncology 2023;45(3):259-264
Objective: To investigate the clinical characteristics of abnormal liver function in patients with advanced esophageal squamous carcinoma treated with programmed death-1 (PD-1) antibody SHR-1210 alone or in combination with apatinib and chemotherapy. Methods: Clinical data of 73 patients with esophageal squamous carcinoma from 2 prospective clinical studies conducted at the Cancer Hospital Chinese Academy of Medical Sciences from May 11, 2016, to November 19, 2019, were analyzed, and logistic regression analysis was used for the analysis of influencing factors. Results: Of the 73 patients, 35 had abnormal liver function. 13 of the 43 patients treated with PD-1 antibody monotherapy (PD-1 monotherapy group) had abnormal liver function, and the median time to first abnormal liver function was 55 days. Of the 30 patients treated with PD-1 antibody in combination with apatinib and chemotherapy (PD-1 combination group), 22 had abnormal liver function, and the median time to first abnormal liver function was 41 days. Of the 35 patients with abnormal liver function, 2 had clinical symptoms, including malaise and loss of appetite, and 1 had jaundice. 28 of the 35 patients with abnormal liver function returned to normal and 7 improved to grade 1, and none of the patients had serious life-threatening or fatal liver function abnormalities. Combination therapy was a risk factor for patients to develop abnormal liver function (P=0.007). Conclusions: Most of the liver function abnormalities that occur during treatment with PD-1 antibody SHR-1210 alone or in combination with apatinib and chemotherapy are mild, and liver function can return to normal or improve with symptomatic treatment. For patients who receive PD-1 antibody in combination with targeted therapy and chemotherapy and have a history of long-term previous smoking, alcohol consumption and hepatitis B virus infection, liver function should be monitored and actively managed in a timely manner.
Humans
;
Esophageal Squamous Cell Carcinoma/drug therapy*
;
Esophageal Neoplasms/pathology*
;
Prospective Studies
;
Programmed Cell Death 1 Receptor/therapeutic use*
;
Antineoplastic Combined Chemotherapy Protocols/adverse effects*
;
Liver Diseases/etiology*
2.Advances in clinical diagnosis and treatment of drug-induced liver injury in children.
Xiao Rong PENG ; Yu Nan CHANG ; Tao QIN ; Ting Ting SHANG ; Hong Mei XU
Chinese Journal of Hepatology 2023;31(4):440-444
Drug-induced liver injury (DILI) is one of the most common adverse drug reactions that may seriously threaten the health of children and is receiving increasing clinical attention day by day. There is still no independent diagnosis and treatment guideline for DILI in children, but its clinical features are not completely similar to those in adults. This article reviews the epidemiology, clinical features, diagnosis, and treatment progress in order to provide a reference for the management of DILI in children.
Child
;
Humans
;
Chemical and Drug Induced Liver Injury/therapy*
;
Drug-Related Side Effects and Adverse Reactions
;
Liver/pathology*
;
Risk Factors
3.Bear bile powder attenuates senecionine-induced hepatic sinusoidal obstruction syndrome in mice.
Kai-Yuan JIANG ; Yi ZHANG ; Xuan-Ling YE ; Fen XIONG ; Yan CHEN ; Xia-Li JIA ; Yi-Xin ZHANG ; Li YANG ; Ai-Zhen XIONG ; Zheng-Tao WANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):270-281
Hepatic sinusoidal obstruction syndrome (HSOS) via exposure to pyrrolizidine alkaloids (PAs) is with high mortality and there is no effective treatment in clinics. Bear bile powder (BBP) is a famous traditional animal drug for curing a variety of hepatobiliary diseases such as cholestasis, inflammation, and fibrosis. Here, we aim to evaluate the protective effect of BBP against HSOS induced by senecionine, a highly hepatotoxic PA compound. Our results showed that BBP treatment protected mice from senecionine-induced HSOS dose-dependently, which was evident by improved liver histology including reduced infiltration of inflammatory cells and collagen positive cells, alleviated intrahepatic hemorrhage and hepatic sinusoidal endothelial cells, as well as decreased conventional serum liver function indicators. In addition, BBP treatment lowered matrix metalloproteinase 9 and pyrrole-protein adducts, two well-known markers positively associated with the severity of PA-induced HSOS. Further investigation showed that BBP treatment prevents the development of liver fibrosis by decreasing transforming growth factor beta and downstream fibrotic molecules. BBP treatment also alleviated senecionine-induced liver inflammation and lowered the pro-inflammatory cytokines, in which tauroursodeoxycholic acid played an important role. What's more, BBP treatment also decreased the accumulation of hydrophobic bile acids, such as cholic acid, taurocholic acid, glycocholic acid, as well. We concluded that BBP attenuates senecionine-induced HSOS in mice by repairing the bile acids homeostasis, preventing liver fibrosis, and alleviating liver inflammation. Our present study helps to pave the way to therapeutic approaches of the treatment of PA-induced liver injury in clinics.
Animals
;
Bile
;
Bile Acids and Salts
;
Endothelial Cells/metabolism*
;
Hepatic Veno-Occlusive Disease/pathology*
;
Inflammation/pathology*
;
Liver Cirrhosis/drug therapy*
;
Mice
;
Powders
;
Pyrrolizidine Alkaloids/adverse effects*
;
Ursidae
4.A novel chemotherapy strategy for advanced hepatocellular carcinoma: a multicenter retrospective study.
Juxian SUN ; Chang LIU ; Jie SHI ; Nanya WANG ; Dafeng JIANG ; Feifei MAO ; Jingwen GU ; Liping ZHOU ; Li SHEN ; Wan Yee LAU ; Shuqun CHENG
Chinese Medical Journal 2022;135(19):2338-2343
BACKGROUND:
Chemotherapy is a common treatment for advanced hepatocellular carcinoma, but the effect is not satisfactory. The study aimed to retrospectively evaluate the effects of adding all-trans-retinoic acid (ATRA) to infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) for advanced hepatocellular carcinoma (HCC).
METHODS:
We extracted the data of patients with advanced HCC who underwent systemic chemotherapy using FOLFOX4 or ATRA plus FOLFOX4 at the Eastern Hepatobiliary Surgery Hospital, First Hospital of Jilin University, and Zhejiang Sian International Hospital and retrospectively compared for overall survival. The Cox proportional hazards model was used to calculate the hazard ratios for overall survival and disease progression after controlling for age, sex, and disease stage.
RESULTS:
From July 2013 to July 2018, 111 patients with HCC were included in this study. The median survival duration was 14.8 months in the ATRA plus FOLFOX4 group and 8.2 months in the FOLFOX4 only group ( P < 0.001). The ATRA plus FOLFOX4 group had a significantly longer median time to progression compared with the FOLFOX4 group (3.6 months vs. 1.8 months, P < 0.001). Hazard ratios for overall survival and disease progression were 0.465 (95% confidence interval: 0.298-0.726; P = 0.001) and 0.474 (0.314-0.717; P < 0.001) after adjusting for potential confounders, respectively.
CONCLUSION
ATRA plus FOLFOX4 significantly improves the overall survival and time to disease progression in patients with advanced HCC.
Humans
;
Carcinoma, Hepatocellular/drug therapy*
;
Retrospective Studies
;
Liver Neoplasms/pathology*
;
Oxaliplatin/therapeutic use*
;
Fluorouracil/adverse effects*
;
Disease Progression
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Leucovorin/adverse effects*
;
Colorectal Neoplasms/drug therapy*
5.Liver fibrosis inhibits lethal injury through D-galactosamine/lipopolysaccharide-induced necroptosis.
Lu LI ; Li BAI ; Su Jun ZHENG ; Yu CHEN ; Zhong Ping DUAN
Chinese Journal of Hepatology 2022;30(4):413-418
Objective: To explore the new mechanism of liver fibrosis through D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced necroptosis as an entry point to inhibit lethal injury. Methods: The carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis was established. At 6 weeks of fibrosis, the mice were challenged with a lethal dose of D-GalN/LPS, and the normal mice treated with the same treatment were used as the control. The experiment was divided into four groups: control group (Control), acute injury group (D-GalN/LPS), liver fibrosis group (Fib), and liver fibrosis + acute challenge group (Fib + D-GalN/LPS). Quantitative PCR and immunofluorescence were used to analyze the expression of necroptosis key signal molecules RIPK1, RIPK3, MLKL and/or P-MLKL in each group. Normal mice were treated with inhibitors targeting key signaling molecules of necroptosis, and then given an acute challenge. The inhibitory effect of D-GalN/LPS-induced-necroptosis on acute liver injury was evaluated according to the changes in transaminase levels and liver histology. Liver fibrosis spontaneous ablation model was established, and then acute challenge was given. Necroptosis key signal molecules expression was analyzed in liver tissue of mice in each group and compared by immunohistochemistry. The differences between groups were compared with t-test or analysis of variance. Results: Quantitative PCR and immunofluorescence assays result showed that D-GalN/LPS-induced significant upregulation of RIPK1, RIPK3, MLKL and/or P-MLKL. Necroptosis key signal molecules inhibition had significantly reduced D-GalN/LPS-induced liver injury, as manifested by markedly reduced serum ALT and AST levels with improvement in liver histology. Necroptosis signaling molecules expression was significantly inhibited in fibrotic livers even under acute challenge conditions. Additionally, liver fibrosis with gradual attenuation of fibrotic ablation had inhibited D-GalN/LPS-induced necroptosis. Conclusion: Liver fibrosis may protect mice from acute lethal challenge injury by inhibiting D-GalN/LPS-induced necroptosis.
Animals
;
Chemical and Drug Induced Liver Injury/pathology*
;
Galactosamine/adverse effects*
;
Lipopolysaccharides/adverse effects*
;
Liver/pathology*
;
Liver Cirrhosis/pathology*
;
Liver Failure, Acute/chemically induced*
;
Mice
;
Necroptosis
6.Pilea umbrosa ameliorate CCl induced hepatic injuries by regulating endoplasmic reticulum stress, pro-inflammatory and fibrosis genes in rat.
Irum NAZ ; Muhammad Rashid KHAN ; Jawaid Ahmed ZAI ; Riffat BATOOL ; Zartash ZAHRA ; Aemin TAHIR
Environmental Health and Preventive Medicine 2020;25(1):53-53
BACKGROUND:
Pilea umbrosa (Urticaceae) is used by local communities (district Abbotabad) for liver disorders, as anticancer, in rheumatism and in skin disorders.
METHODS:
Methanol extract of P. umbrosa (PUM) was investigated for the presence of polyphenolic constituents by HPLC-DAD analysis. PUM (150 mg/kg and 300 mg/kg) was administered on alternate days for eight weeks in rats exposed with carbon tetrachloride (CCl). Serum analysis was performed for liver function tests while in liver tissues level of antioxidant enzymes and biochemical markers were also studied. In addition, semi quantitative estimation of antioxidant genes, endoplasmic reticulum (ER) induced stress markers, pro-inflammatory cytokines and fibrosis related genes were carried out on liver tissues by RT-PCR analysis. Liver tissues were also studied for histopathological injuries.
RESULTS:
Level of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and glutathione (GSH) decreased (p < 0.05) whereas level of thiobarbituric acid reactive substance (TBARS), HO and nitrite increased in liver tissues of CCl treated rat. Likewise increase in the level of serum markers; alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total bilirubin was observed. Moreover, CCl caused many fold increase in expression of ER stress markers; glucose regulated protein (GRP-78), x-box binding protein1-total (XBP-1 t), x-box binding protein1-unspliced (XBP-1 u) and x-box binding protein1-spliced (XBP-1 s). The level of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) was aggregated whereas suppressed the level of antioxidant enzymes; γ-glutamylcysteine ligase (GCLC), protein disulfide isomerase (PDI) and nuclear erythroid 2 p45-related factor 2 (Nrf-2). Additionally, level of fibrosis markers; transforming growth factor-β (TGF-β), Smad-3 and collagen type 1 (Col1-α) increased with CCl induced liver toxicity. Histopathological scrutiny depicted damaged liver cells, neutrophils infiltration and dilated sinusoids in CCl intoxicated rats. PUM was enriched with rutin, catechin, caffeic acid and apigenin as evidenced by HPLC analysis. Simultaneous administration of PUM and CCl in rats retrieved the normal expression of these markers and prevented hepatic injuries.
CONCLUSION
Collectively these results suggest that PUM constituted of strong antioxidant chemicals and could be a potential therapeutic agent for stress related liver disorders.
Animals
;
Carbon Tetrachloride
;
adverse effects
;
Chemical and Drug Induced Liver Injury
;
drug therapy
;
etiology
;
pathology
;
Endoplasmic Reticulum Stress
;
drug effects
;
Fibrosis
;
drug therapy
;
genetics
;
Inflammation
;
drug therapy
;
genetics
;
Liver
;
drug effects
;
enzymology
;
metabolism
;
Male
;
Protective Agents
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Urticaceae
;
chemistry
7.Anti-tumor and immune-modulating effect of decoction in mice bearing hepatoma H22 tumor.
Limei CHEN ; Tong JIN ; Chuntao NING ; Suli WANG ; Lijie WANG ; Jingming LIN
Journal of Southern Medical University 2019;39(2):241-248
OBJECTIVE:
To investigate the antitumor activity of decoction and study its liver and kidney toxicity and its effect on the immune system in a tumor-bearing mouse model.
METHODS:
Hepatoma H22 tumor-bearing mouse models were randomized into model group, cyclophosphamide (CTX) group, and low-, moderate-, and high-dose decoction groups (JW-L, JW-M, and JW-H groups, respectively). The antitumor activity of decoction was assessed by calculating the tumor inhibition rate and pathological observation of the tumor tissues. Immunohistochemistry was used to detect the expressions of Bax, Bcl-2, Bax/Bcl-2 and caspase-3 in the tumors. The liver and kidney toxicity of decoction was analyzed by evaluating the biochemical indicators of liver and kidney functions. The immune function of the tumor-bearing mice were assessed by calculating the immune organ index, testing peripheral blood routines, and detection of serum IL-2 and TNF-α levels using enzyme-linked immunosorbent assay.
RESULTS:
Compared with that in the model group, the tumor mass in CTX, JW-M and JW-H groups were all significantly reduced ( < 0.05) with cell rupture and necrosis in the tumors. Immunohistochemistry revealed obviously up-regulated expressions of Bax and caspase-3 and down- regulated expression of Bcl-2 protein with an increased Bax/Bcl-2 ratio in CTX, JW-M and JW-H groups. Treatment with decoction significantly reduced Cr, BUN, AST and ALT levels, improved the immune organ index, increased peripheral blood leukocytes, erythrocytes and hemoglobin levels, and up-regulated the levels of TNF-α and IL-2 in the tumor-bearing mice. These changes were especially significant in JW-H group when compared with the parameters in the model group ( < 0.01).
CONCLUSIONS
decoction has a strong anti-tumor activity and can improve the liver and kidney functions of tumor-bearing mice. Its anti-tumor effect may be attributed to the up-regulation of Bax, caspase-3, TNF-α and IL-2 levels and the down-regulation of Bcl-2 expression as well as the enhancement of the non-specific immune function.
Animals
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Carcinoma, Hepatocellular
;
drug therapy
;
immunology
;
metabolism
;
pathology
;
Drugs, Chinese Herbal
;
pharmacology
;
Kidney
;
drug effects
;
Liver
;
drug effects
;
pathology
;
Liver Neoplasms
;
drug therapy
;
immunology
;
metabolism
;
pathology
;
Mice
;
Necrosis
;
Neoplasm Proteins
;
metabolism
;
Random Allocation
;
Up-Regulation
8.Interleukin-17 promotes mouse hepatoma cell proliferation by antagonizing interferon-γ.
Jie LI ; Kun YAN ; Yi YANG ; Hua LI ; Zhidong WANG ; Xin XU
Journal of Southern Medical University 2019;39(1):1-5
OBJECTIVE:
To investigate the interaction between interleukin-17 (IL-17) and interferon-γ (IFN-γ) and how their interaction affects the growth of mouse hepatoma Hepa1-6 cells.
METHODS:
Hepa1-6 cells treated with IL-17 and IFN-γ either alone or in combination were examined for changes in cell proliferation using MTT assay and in cell cycle distribution using flow cytometry. Western blotting was used to detect the protein expression levels of proliferating cell nuclear antigen (PCNA), cyclin D1, P21 and P16 and the phosphorylation of p38MAPK, ERK1/2 and Stat1 in the cells.
RESULTS:
Compared with control group, IFN-γ treatment obviously inhibited the growth and proliferation of Hepa1-6 cells, induced cell cycle arrest at G0/G1 phase, reduced the protein expression of PCNA and cyclin D1, and increased the protein expression of P21. IL-17 alone had no effect on the growth of Hepa1-6 cells. In the combined treatment, IL-17 significantly antagonized the effects of IFN-γ. Compared with those treated with IFN-γ alone, the cells with the combined treatment showed significantly decreased G0/G1 cell population, increased the protein expressions of PCNA and cyclin D1, and decreased the protein expression of P21. IL-17 significantly inhibited IFN-γ-induced phosphorylation of p38MAPK and ERK1/2 without affecting the phosphorylation of Stat1.
CONCLUSIONS
IL-17 obviously reverses the antitumor effects of IFN-γ to promote the proliferation of mouse hepatoma cells and accelerate the development of hepatocellular carcinoma.
Animals
;
Carcinoma, Hepatocellular
;
metabolism
;
pathology
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cyclin D1
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p21
;
metabolism
;
Interferon-gamma
;
antagonists & inhibitors
;
Interleukin-17
;
pharmacology
;
Liver Neoplasms
;
metabolism
;
pathology
;
Mice
;
Neoplasm Proteins
;
metabolism
;
Proliferating Cell Nuclear Antigen
;
metabolism
9.Rdh13 deficiency weakens carbon tetrachloride-induced liver injury by regulating Spot14 and Cyp2e1 expression levels.
Xiaofang CUI ; Benting MA ; Yan WANG ; Yan CHEN ; Chunling SHEN ; Ying KUANG ; Jian FEI ; Lungen LU ; Zhugang WANG
Frontiers of Medicine 2019;13(1):104-111
Mitochondrion-localized retinol dehydrogenase 13 (Rdh13) is a short-chain dehydrogenase/reductase involved in vitamin A metabolism in both humans and mice. We previously generated Rdh13 knockout mice and showed that Rdh13 deficiency causes severe acute retinal light damage. In this study, considering that Rdh13 is highly expressed in mouse liver, we further evaluated the potential effect of Rdh13 on liver injury induced by carbon tetrachloride (CCl). Although Rdh13 deficiency showed no significant effect on liver histology and physiological functions under regular culture, the Rdh13 mice displayed an attenuated response to CCl-induced liver injury. Their livers also exhibited less histological changes and contained lower levels of liver-related metabolism enzymes compared with the livers of wild-type (WT) mice. Furthermore, the Rdh13 mice had Rdh13 deficiency and thus their liver cells were protected from apoptosis, and the quantity of their proliferative cells became lower than that in WTafter CCl exposure. The ablation of Rdh13 gene decreased the expression levels of thyroid hormone-inducible nuclear protein 14 (Spot14) and cytochrome P450 (Cyp2e1) in the liver, especially after CCl treatment for 48 h. These data suggested that the alleviated liver damage induced by CCl in Rdh13 mice was caused by Cyp2e1 enzymes, which promoted reductive CCl metabolism by altering the status of thyroxine metabolism. This result further implicated Rdh13 as a potential drug target in preventing chemically induced liver injury.
Alcohol Oxidoreductases
;
deficiency
;
genetics
;
Animals
;
Carbon Tetrachloride Poisoning
;
enzymology
;
Chemical and Drug Induced Liver Injury
;
enzymology
;
pathology
;
Cytochrome P-450 CYP2E1
;
metabolism
;
Female
;
Immunohistochemistry
;
Liver
;
drug effects
;
enzymology
;
pathology
;
Male
;
Mice
;
Mice, 129 Strain
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Nuclear Proteins
;
metabolism
;
Transcription Factors
;
metabolism
10.Study on difference of liver toxicity and its molecular mechanisms caused by Tripterygium wilfordii multiglycoside and equivalent amount of triptolid in rats.
Ying-Ying MIAO ; Lan LUO ; Ting SHU ; Hao WANG ; Zhen-Zhou JIANG ; Lu-Yong ZHANG
China Journal of Chinese Materia Medica 2019;44(16):3468-3477
Tripterygium wilfordii multiglycoside( GTW),an extract derived from T. wilfordii,has been used for rheumatoid arthritis and other immune diseases in China. However its potential hepatotoxicity has not been investigated completely. Firstly,the content of triptolid( TP) in GTW was 0. 008% confirmed by a LC method. Then after oral administration of GTW( 100,150 mg·kg-1) and TP( 12 μg·kg-1) in female Wistar rats for 24 h,it was found that 150 mg·kg-1 GTW showed more serious acute liver injury than 12 μg·kg-1 TP,with the significantly increased lever of serum ALT,AST,TBA,TBi L,TG and bile duct hyperplasia even hepatocyte apoptosis. The expression of mRNA and proteins of liver bile acid transporters such as BSEP,MRP2,NTCP and OATP were down-regulated significantly by GTW to inhibit bile acid excretion and absorption,resulting in cholestatic liver injury. Moreover,GTW was considered to be involved in hepatic oxidative stress injury,although it down-regulated SOD1 and GPX-1 mRNA expression without significant difference in MDA and GSH levels. In vitro,we found that TP was the main toxic component in GTW,which could inhibit cell viability up to 80% in Hep G2 and LO2 cells at the dose of 0. 1 μmol·L-1. Next a LC-MS/MS method was used to detect the concentration of triptolid in plasma from rats,interestingly,we found that the content of TP in GTW was always higher than in the same amount of TP,suggesting the other components in GTW may affect the TP metabolism. Finally,we screened the substrate of p-glycoprotein( p-gp) in Caco-2 cells treated with components except TP extrated from GTW,finding that wilforgine,wilforine and wilfordine was the substrate of p-gp. Thus,we speculated that wilforgine,wilforine and wilfordine may competitively inhibit the excretion of TP to bile through p-gp,leading to the enhanced hepatotoxity caused by GTW than the same amount of TP.
Animals
;
Caco-2 Cells
;
Chemical and Drug Induced Liver Injury
;
pathology
;
Chromatography, Liquid
;
Diterpenes
;
toxicity
;
Drugs, Chinese Herbal
;
toxicity
;
Epoxy Compounds
;
toxicity
;
Female
;
Glycosides
;
toxicity
;
Humans
;
Liver
;
drug effects
;
Phenanthrenes
;
toxicity
;
Plant Extracts
;
toxicity
;
Rats
;
Rats, Wistar
;
Tandem Mass Spectrometry
;
Tripterygium
;
toxicity

Result Analysis
Print
Save
E-mail