1.Effect of gallic acid in increasing the chemosensitivity of hepatocellular carcinoma HepG2 cells to sorafenib
Baikun LIU ; Zhiru WANG ; Wenjing ZHAO
Journal of Clinical Hepatology 2025;41(2):292-299
ObjectiveTo investigate the chemosensitization effect of gallic acid (GA) combined with sorafenib (Sora) on hepatocellular carcinoma HepG2 cells and related mechanisms. MethodsHepG2 cells were randomly divided into control group, GA group, Sora group, and GA+Sora group. CCK8 assay was used to measure cell viability; CompuSyn software was used to analyze combination index (CI); colony formation assay was used to evaluate the colony formation ability of cells; flow cytometry was used to measure cell apoptosis; wound healing assay and Transwell chamber assay were used to observe the migration and invasion abilities of cells; Western Blot was used to measure the expression matrix metalloproteinase 2 (MMP-2), matrix metalloproteinase 9 (MMP-9), and apoptosis-related proteins. HepG2 cells were subcutaneously inoculated into the lower right back of mice, and 6 days later, the mice were divided into control group, GA group, Sora group, and GA+Sora group. Tumor size and body weight were measured once a week, and drug intervention was performed for 21 days. Then the nude mice were sacrificed, and tumor weight was measured. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsThe mean IC50 values of GA and Sora for the treatment of HepG2 cells for 48 hours were 123.47±5.16 μmol/L and 9.87±0.98 μmol/L, respectively, and when Sora was combined with 70 μmol/L GA (IC30), IC50 decreased to 2.06±0.35 μmol/L; the CI value was<1 for Sora at different concentrations combined with 70 μmol/L GA. The number of cell colonies was 234.0±20.4, 147.0±12.1, 129.3±13.3, and 73.0±7.6, respectively, in the four groups, and the GA+Sora group had a significantly lower number of cell colonies than the control group, the GA group, and the Sora group (all P<0.05). After 48 hours of treatment, the cell apoptosis rate was 1.98%±0.29%, 15.17%± 1.56%, 18.65%±1.48%, and 34.60%±5.36%, respectively, in the four groups, and the GA+Sora group had a significantly higher cell apoptosis rate than the control group, the GA group, and the Sora group (all P<0.05). After 24 hours of treatment, the cell migration rate was 55.59%±5.08%, 29.34%±4.36%, 21.80%±5.16%, and 6.47%±2.75%, respectively, in the four groups, and the GA+Sora group had a significantly lower cell migration rate than the control group, the GA group, and the Sora group (all P<0.05). After 48 hours of treatment, the number of transmembrane cells was 223.7±13.0, 168.3±10.9, 155.3±29.1, and 62.7±19.7, respectively, in the four groups, and the GA+Sora group had a significantly lower number of transmembrane cells than the control group, the GA group, and the Sora group (all P<0.05). Compared with the control group, the GA group, the Sora group, and the GA+Sora group had significant reductions in the protein expression levels of MMP-2, MMP-9, and Bcl-2 (all P<0.05) and significant increases in the protein expression levels of Bax and cleaved caspase-3 (all P<0.05). Compared with the control group, the GA, Sora, and GA+Sora groups had significant reductions in tumor volume and weight (all P<0.05), and compared with the Sora group, the GA+Sora group had significant reductions in tumor volume and weight in nude mice (both P<0.05). ConclusionGA can increase the sensitivity of HepG2 cells to Sora chemotherapy, possibly by promoting cell apoptosis and inhibiting cell migration and invasion after combination with Sora.
2.Optimization Strategy and Practice of Traditional Chinese Medicine Compound and Its Component Compatibility
Zhihao WANG ; Wenjing ZHOU ; Chenghao FEI ; Yunlu LIU ; Yijing ZHANG ; Yue ZHAO ; Lan WANG ; Liang FENG ; Zhiyong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):299-310
Prescription optimization is a crucial aspect in the study of traditional Chinese medicine (TCM) compounds. In recent years, the introduction of mathematical methods, data mining techniques, and artificial neural networks has provided new tools for elucidating the compatibility rules of TCM compounds. The study of TCM compounds involves numerous variables, including the proportions of different herbs, the specific extraction parts of each ingredient, and the interactions among multiple components. These factors together create a complex nonlinear dose-effect relationship. In this context, it is essential to identify methods that suit the characteristics of TCM compounds and can leverage their advantages for effective application in new drug development. This paper provided a comprehensive review of the cutting-edge optimization experimental design methods applied in recent studies of TCM compound compatibilities. The key technical issues, such as the optimization of source material selection, dosage optimization of compatible herbs, and multi-objective optimization indicators, were discussed. Furthermore, the evaluation methods for component effects were summarized during the optimization process, so as to provide scientific and practical foundations for innovative research in TCM and the development of new drugs based on TCM compounds.
3.Rehmanniae Radix Iridoid Glycosides Protect Kidneys of Diabetic Mice by Regulating TGF-β1/Smads Signaling Pathway
Hongwei ZHANG ; Ming LIU ; Huisen WANG ; Wenjing GE ; Xuexia ZHANG ; Qian ZHOU ; Huani LI ; Suqin TANG ; Gengsheng LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):56-66
ObjectiveTo investigate the protective effect of Rehmanniae Radix iridoid glycosides (RIG) on the kidney tissue of streptozotocin (STZ)-induced diabetic mice and explore the underlying mechanism. MethodsTwelve of 72 male C57BL/6J mice were randomly selected as the normal group, and the remaining 60 mice were fed with a high-fat diet for six weeks combined with injection of 60 mg·kg-1 STZ for 4 days to model type 2 diabetes mellitus. The successfully modeled mice were randomized into model, metformin (250 mg·kg-1), catalpol (100 mg·kg-1), low-dose RIG (RIG-L, 200 mg·kg-1) and high-dose RIG (RIG-H, 400 mg·kg-1) groups (n=11). Mice in each group were administrated with corresponding drugs, while those in the normal group and model group were administrated with the same dose of distilled water by gavage once a day. After 8 weeks of intervention, an oral glucose tolerance test (OGTT) was performed, and the area under the curve (AUC) was calculated. After mice were sacrificed, both kidneys were collected. The body weight, kidney weight, and fasting blood glucose (FBG) were measured. Biochemical assays were performed to measure the serum levels of triglycerides (TG), total cholesterol (TC), serum creatinine (SCr), and blood urea nitrogen (BUN). Enzyme-linked immunosorbent assay (ELISA) was employed to determine the serum level of fasting insulin (FINS), and the insulin sensitivity index (ISI) and homeostatic model assessment for insulin resistance (HOMA-IR) were calculated. The pathological changes in kidneys of mice were observed by hematoxylin-eosin staining and Masson staining. The immunohistochemical method (IHC) was employed to assess the expression of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-α(TNF-α), transforming growth factor-β1 (TGF-β1), and collagen-3 (ColⅢ) in the kidney tissue. The protein levels of TGF-β1, cell signal transduction molecule 3 (Smad3), matrix metalloproteinase-9 (MMP-9), and ColⅢ in kidneys of mice were determined by Western blot. ResultsCompared with the normal group, the model group showcased decreased body weight and ISI (P<0.01), increased kidney weight, FBG, AUC, FINS, HOMA-IR, TC, TG, SCr, and BUN (P<0.01), glomerular hypertrophy, capsular space narrowing, and collagen deposition in the kidney, up-regulated protein levels of IL-1, IL-6, TNF-α, TGF-β1, ColⅢ, and Smad3 (P<0.01), and down-regulated protein level of MMP-9 (P<0.01) in the kidney tissue. Compared with the model group, the treatment groups had no significant difference in the body weight and decreased kidney weight (P<0.05, P<0.01). The FBG level declined in the RIG-H group after treatment for 4-8 weeks and in the metformin, catalpol, and RIG-L groups after treatment for 6-8 weeks (P<0.01). The AUC in the RIG-L, RIG-H, and metformin groups decreased (P<0.05, P<0.01). The levels of TC, SCr, and BUN in the serum of mice in each treatment group became lowered (P<0.05, P<0.01). The level of TG declined in the RIG-L, RIG-H, and metformin groups (P<0.05, P<0.01). The serum level of FINS declined in the catalpol, RIG-L, and metformin groups (P<0.01). Compared with the model group, the treatment groups showed decreased HOMA-IR (P<0.01), increased ISI (P<0.01), alleviated pathological changes in the kidney tissue, and down-regulated expression of IL-1 and TGF-β1. In addition, the protein levels of IL-6, TNF-α, and ColⅢ in the RIG-H and metformin groups and IL-6 and TNF-α in the RIG-L group were down-regulated (P<0.05, P<0.01), and the protein levels of IL-6, TNF-α, and ColⅢ in the catalpol group and ColⅢ in the RIG-L group showed a decreasing trend without statistical difference. The protein levels of TGF-β1, Smad3, and ColⅢ in the RIG-H and metformin groups were down-regulated (P<0.01). Compared with that in the model group, the protein level of MMP-9 was up-regulated in each treatment group (P<0.01). ConclusionRIG can improve the renal structure and function of diabetic mice by regulating the TGF-β1/Smads signaling pathway.
4.Randomized Controlled Study of Baoshen Prescription in Treating Stage Ⅳ Diabetic Nephropathy in Patients with Syndromes of Qi-Yin Deficiency and Kidney Collateral Stasis and Obstruction
Yiting QIU ; Shuangshuang HONG ; Zhiqiu LIU ; Xinru SUN ; Yuefen WANG ; Mengchao LIU ; Wenjing ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):124-131
ObjectiveTo evaluate the clinical efficacy and safety of Baoshen prescription in the treatment of stage Ⅳ diabetic nephropathy (DN) in the patients with syndromes of Qi-Yin deficiency and kidney collateral stasis and obstruction, and to explore the mechanism of this prescription delaying the disease progression. MethodsA randomized, controlled, double-blind, multicenter clinical trial was conducted, in which 94 stage Ⅳ DN patients with syndromes of Qi-Yin deficiency and kidney collateral stasis and obstruction were randomly assigned into Baoshen prescription and control groups (47 cases). The treatment lasted for 12 weeks. The primary efficacy indicators were mainly renal function indexes, including urine albumin-to-creatinine ratio (UACR), 24-hour urine total protein (24 h-UTP), serum creatinine (SCr), and estimated glomerular filtration rate (eGFR). The secondary efficacy indicators were metabolic memory of hyperglycemia, podocyte epithelial-to-mesenchymal transdifferentiation-related indexes, and TCM syndrome score. ResultsAfter 12 weeks of treatment, the Baoshen prescription group showed lowered levels of advanced glycation end products (lgAGEs), connective tissue growth factor (CTGF), type Ⅳ collagen (Col-Ⅳ), receptor of AGEs (RAGE), urinary fibroblast-specific protein-1 (FSP-1), UACR, 24 h-UTP, and glycated hemoglobin (HbAlc) (P<0.05), and an upward trend of miR-21 mRNA. The control group showed elevated levels of SCr and UREA and lowered levels of urinary FSP-1, eGFR, and HbAlc (P<0.05). After treatment, the Baoshen prescription group had lower levels of lgAGEs, CTGF, urinary FSP-1, SCr, UACR, and 24 h-UTP and higher levels of Col-Ⅳ and eGFR than the control group (P<0.05). In addition, the Baoshen prescription group showed statistically significant differences in SCr, eGFR, UACR, and 24 h-UTP before and after treatment (P<0.05). ConclusionBaoshen prescription can effectively improve the renal function, reduce the urinary protein level, and alleviate clinical symptoms in stage Ⅳ DN patients with syndromes of Qi-Yin deficiency and kidney collateral stasis and obstruction. The mechanism may be related to the metabolic memory of hyperglycemia and epithelial-to-mesenchymal transdifferentiation of podocytes.
5.Current Status of Stratified Diagnosis and Treatment of Sjögren's Syndrome and Reflections on It
Wenjing LIU ; Xinyao ZHOU ; Quan JIANG
Journal of Traditional Chinese Medicine 2025;66(3):244-250
Stratified diagnosis and treatment is a crucial approach in precision medicine, aiming to optimize medical care by grouping patients based on clinical manifestations, biomarkers, and pathological characteristics. Based on clinical stages, symptoms, age, gene expression, and pathology, research on Sjögren's syndrome (SS) has proposed various stratification methods, incorporating both traditional Chinese medicine (TCM) and Western medicine perspectives. These methods provide essential support for early diagnosis, risk assessment, and personalized treatment. Key strategies include moving SS intervention time forward, to leverage TCM's preventive principles, integrating TCM and Western tools to enhance precision, innovating clinical trial designs, developing multifactorial risk prediction models and digital imaging technologies, and constructing combined prognostic models for personalized follow-up and big data-driven treatment. These insights offer a comprehensive framework for advancing SS precision medicine.
6.Mechanism of Xinnao shutong capsule alleviating cerebral ischemia-reperfusion injury in rats by regulating ferroptosis
Huani LI ; Changhe LIU ; Xiaoyan GUO ; Xin ZHONG ; Wei ZHANG ; Wenjing GE
China Pharmacy 2025;36(3):306-311
OBJECTIVE To study the mechanism of Xinnao shutong capsule alleviating cerebral ischemia reperfusion injury (CIRI) in rats by regulating the ferroptosis pathway. METHODS SD rats were randomly divided into sham operation group, model group, Xinnao shutong low-dose, high-dose group (220, 440 mg/kg), Ginkgo biloba leaves extract group (positive control, 150 mg/kg). Each group of rats was orally administered with the corresponding medication/normal saline for 7 consecutive days. Transient occlusion of the middle cerebral artery was adopted to induce the CIRI model; the samples were taken 24 h after the operation; the cerebral infarction area of rats was detected, and the cerebral infarction rate was calculated. The pathological changes of brain tissues were observed, and the levels of lipid peroxide (LPO), malondialdehyde (MDA) and glutathione (GSH) in cerebral tissue were detected; mRNA and protein expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase 1(HO-1) and glutathione peroxidase 4 (GPX4) were all detected in cerebral tissue of rats. RESULTS Compared with model group, the cerebral infarction rate, the content of total iron in cerebral tissue and serum level of LPO (except for Ginkgo biloba leaves extract group and Xinnao shutong low-dose group) were all decreased significantly in G. biloba leaves extract group and Xinnao shutong groups (P<0.05 or P<0.01); the serum level of GSH, the protein and mRNA expressions of Nrf2, HO-1 and GPX4 were all increased significantly (P<0.05 or P<0.01). The pathological damage to brain tissue was reduced, the number of nerve cells increased, the edema was alleviated, and the nuclear membrane was flattened. CONCLUSIONS Xinnao shutong capsule can inhibit ferroptosis and reduce CIRI, the mechanism of which may be associated with the activation of the Nrf2/HO-1/GPX4 signaling pathway.
7.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
8.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
9.Combination Therapy of Pyrotinib and Metronomic Vinorelbine in HER2+ Advanced Breast Cancer after Trastuzumab Failure (PROVE): A Prospective Phase 2 Study
Chunfang HAO ; Xu WANG ; Yehui SHI ; Zhongsheng TONG ; Shufen LI ; Xiaodong LIU ; Lan ZHANG ; Jie ZHANG ; Wenjing MENG ; Li ZHANG
Cancer Research and Treatment 2025;57(2):434-442
Purpose:
Approximately 50%-74% of patients with metastatic human epidermal growth factor receptor 2 (HER2)–positive breast cancer do not respond to trastuzumab, with 75% of treated patients experiencing disease progression within a year. The combination of pyrotinib and capecitabine has showed efficacy in these patients. This study evaluates the efficacy and safety of pyrotinib combined with metronomic vinorelbine for trastuzumab-pretreated HER2-positive advanced breast cancer patients.
Materials and Methods:
In this phase 2 trial, patients aged 18-75 years with HER2-positive advanced breast cancer who had previously failed trastuzumab treatment were enrolled to receive pyrotinib 400 mg daily in combination with vinorelbine 40mg thrice weekly. The primary endpoint was progression-free survival (PFS), while secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety.
Results:
From October 21, 2019, to January 21, 2022, 36 patients were enrolled and received at least one dose of study treatment. At the cutoff date, 20 experienced disease progression or death. With a median follow-up duration of 35 months, the median PFS was 13.5 months (95% confidence interval [CI], 8.3 to 18.5). With all patients evaluated, an ORR of 38.9% (95% CI, 23.1 to 56.5) and a DCR of 83.3% (95% CI, 67.2 to 93.6) were achieved. The median OS was not reached. Grade 3 adverse events (AEs) were observed in 17 patients, with diarrhea being the most common (27.8%), followed by vomiting (8.3%) and stomachache (5.6%). There were no grade 4/5 AEs.
Conclusion
Pyrotinib combined with metronomic vinorelbine showed promising efficacy and an acceptable safety profile in HER2-positive advanced breast cancer patients after trastuzumab failure.
10.Combination Therapy of Pyrotinib and Metronomic Vinorelbine in HER2+ Advanced Breast Cancer after Trastuzumab Failure (PROVE): A Prospective Phase 2 Study
Chunfang HAO ; Xu WANG ; Yehui SHI ; Zhongsheng TONG ; Shufen LI ; Xiaodong LIU ; Lan ZHANG ; Jie ZHANG ; Wenjing MENG ; Li ZHANG
Cancer Research and Treatment 2025;57(2):434-442
Purpose:
Approximately 50%-74% of patients with metastatic human epidermal growth factor receptor 2 (HER2)–positive breast cancer do not respond to trastuzumab, with 75% of treated patients experiencing disease progression within a year. The combination of pyrotinib and capecitabine has showed efficacy in these patients. This study evaluates the efficacy and safety of pyrotinib combined with metronomic vinorelbine for trastuzumab-pretreated HER2-positive advanced breast cancer patients.
Materials and Methods:
In this phase 2 trial, patients aged 18-75 years with HER2-positive advanced breast cancer who had previously failed trastuzumab treatment were enrolled to receive pyrotinib 400 mg daily in combination with vinorelbine 40mg thrice weekly. The primary endpoint was progression-free survival (PFS), while secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety.
Results:
From October 21, 2019, to January 21, 2022, 36 patients were enrolled and received at least one dose of study treatment. At the cutoff date, 20 experienced disease progression or death. With a median follow-up duration of 35 months, the median PFS was 13.5 months (95% confidence interval [CI], 8.3 to 18.5). With all patients evaluated, an ORR of 38.9% (95% CI, 23.1 to 56.5) and a DCR of 83.3% (95% CI, 67.2 to 93.6) were achieved. The median OS was not reached. Grade 3 adverse events (AEs) were observed in 17 patients, with diarrhea being the most common (27.8%), followed by vomiting (8.3%) and stomachache (5.6%). There were no grade 4/5 AEs.
Conclusion
Pyrotinib combined with metronomic vinorelbine showed promising efficacy and an acceptable safety profile in HER2-positive advanced breast cancer patients after trastuzumab failure.

Result Analysis
Print
Save
E-mail