1.Optimization Strategy and Practice of Traditional Chinese Medicine Compound and Its Component Compatibility
Zhihao WANG ; Wenjing ZHOU ; Chenghao FEI ; Yunlu LIU ; Yijing ZHANG ; Yue ZHAO ; Lan WANG ; Liang FENG ; Zhiyong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):299-310
Prescription optimization is a crucial aspect in the study of traditional Chinese medicine (TCM) compounds. In recent years, the introduction of mathematical methods, data mining techniques, and artificial neural networks has provided new tools for elucidating the compatibility rules of TCM compounds. The study of TCM compounds involves numerous variables, including the proportions of different herbs, the specific extraction parts of each ingredient, and the interactions among multiple components. These factors together create a complex nonlinear dose-effect relationship. In this context, it is essential to identify methods that suit the characteristics of TCM compounds and can leverage their advantages for effective application in new drug development. This paper provided a comprehensive review of the cutting-edge optimization experimental design methods applied in recent studies of TCM compound compatibilities. The key technical issues, such as the optimization of source material selection, dosage optimization of compatible herbs, and multi-objective optimization indicators, were discussed. Furthermore, the evaluation methods for component effects were summarized during the optimization process, so as to provide scientific and practical foundations for innovative research in TCM and the development of new drugs based on TCM compounds.
2.Quality index monitoring and application evaluation of nucleic acid pooling detection mode in blood stations
Fei DONG ; Yang LIU ; Guoliang DONG ; Weiwei ZHAI ; Weimin LIU ; Xuemei LI
Chinese Journal of Blood Transfusion 2025;38(2):251-256
[Objective] To explore the influencing factors of quality monitoring index on the nucleic acid pooling detection mode and continuously improve the detection quality of nucleic acid laboratory. [Methods] The quality monitoring indicators (NAT reactive rate, NAT resolution reactive rate, NAT invalid batch rate, NAT invalid result rate, equipment failure rate) and causes of invalidity in our laboratory from January 1, 2020 to December 31, 2022 were retrospectively analyzed. The quality monitoring indicators of the laboratory during 2020 to 2022 were compared longitudinally. The quality monitoring indicators of the laboratory in 2022 were compared horizontally with the overall level in Shandong for the same period to find the differences. [Results] From 2020 to 2022, a total of 218 686 samples were detected, the NAT reactive rate was 0.15‰ (32 samples in total), the resolution reactive rate was 39.02%, the invalid batch rate was 1.06%, the invalid result rate was 1.18%, and the equipment failure rate was 3.58%. There were no differences in the NAT reactive rate, NAT resolution reactive rate and NAT invalid batch rate among different years (P>0.05), but there were differences in the invalid result rate (P<0.05). Equipment failure was the main cause of invalid results (56.53%). Compared with other laboratories in Shandong, there were differences in the NAT reactive rate and invalid result rate (P<0.05). There were differences in the reaction rate, resolution rate and invalid result rate among different reagents (P<0.05). Compared with other two laboratories using the same manufacturer's reagent, there were differences in the reactive rate and invalid result rate (P<0.05), but no difference in the resolution rate and invalid batch rate (P>0.05). [Conclusion] Establishing quality indexes for process control and regular analysis can timely detect potential risks in laboratory operation. The use of quality indicators to implement self-comparison and inter-laboratory comparison can help the laboratory systematically and scientifically evaluate its own operating status and formulate corresponding quality management strategies, thereby improving the laboratory's testing capacity and ensure the safety of blood use.
3.Xiaozhong Zhitong Mixture(消肿止痛合剂)Combined with Antibiotic Bone Cement in the Treatment of Diabetic Foot Ulcers with Damp-Heat Obstructing Syndrome:A Randomized Controlled Trial of 35 Patients
Xiaotao WEI ; Zhijun HE ; Tao LIU ; Zhenxing JIANG ; Fei LI ; Yan LI ; Jinpeng LI ; Wen CHEN ; Bihui BAI ; Xuan DONG ; Bo SUN
Journal of Traditional Chinese Medicine 2025;66(7):704-709
ObjectiveTo observe the clinical effectiveness and safety of Xiaozhong Zhitong Mixture (消肿止痛合剂) combined with antibiotic bone cement in the treatment of diabetic foot ulcer (DFU) with damp-heat obstructing syndrome. MethodsA total of 72 DFU patients with damp-heat obstructing syndrome were randomly assigned to treatment group (36 cases) and the control group (36 cases). Both groups received standard treatment and topical antibiotic bone cement for ulcer wounds, while the treatment group received oral Xiaozhong Zhitong Mixture (50 ml per time, three times daily) in additionally. Both groups underwent daily wound dressing changes for 21 consecutive days. Ulcer healing rate, serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), malondialdehyde (MDA), superoxide dismutase (SOD), C-reactive protein (CRP), and white blood cell (WBC) count were observed before and after treatment, and visual analog scale (VAS) scores for wound pain, traditional Chinese medicine (TCM) syndrome scores, and the DFU Healing Scale (DMIST scale) were also compared. Liver and kidney function were evaluated before and after treatment, and adverse events such as allergic reactions, worsening ulcer pain were recorded. ResultsTotally 35 patients in the treatment group and 33 in the control group were included in the final analysis. The ulcer healing rate in the treatment group was (87.93±9.34)%, significantly higher than (81.82±12.02)% in the control group (P = 0.035). Compared to pre-treatment levels, both groups showed significant reductions in serum CRP, WBC, MDA, IL-1β, and TNF-α levels, with an increase in SOD level (P<0.05). TCM syndrome scores, VAS, and DMIST scores also significantly decreased in both groups (P<0.05), with greater improvements in the treatment group (P<0.05). No significant adverse reactions were observed in either group during treatment. ConclusionXiaozhong Zhitong Mixture combined with antibiotic bone cement has significant advantages in promoting DFU healing, reducing inflammatory response, and alleviating oxidative stress in DFU patients with damp-heat obstructing syndrome, with good safety for DFU patients with damp-heat obstructing syndrome.
4.Stratified mucin-producing epithelial neoplastic lesions of the cervix: clinicohistologic and molecular pathological characteristics
LIU Yaling ; HUANG Xian ; WANG Fei ; HU Quanquan ; XUAN Lanlan
Chinese Journal of Cancer Biotherapy 2025;32(3):301-308
[摘 要] 目的:探究浸润性复层产生黏液的复层上皮癌(ISMC)的临床组织及分子病理特征。方法: 回顾性分析2018年1月至2024年4月间安徽医科大学安庆医学中心/安庆市立医院及皖南医学院第一附属医院/弋矶山医院的病理数据库的11例ISMC和4例产生黏液的复层上皮内病变(SMILE)的临床病理资料、免疫组化、阿利新蓝(AB)/过碘酸雪夫(PAS)染色、分子学检测及PD-L1表达情况。结果:ISMC患者多表现为阴道不规则流血。细胞质内含有黏液的细胞呈复层排列,周围呈栅栏状,肿瘤细胞可呈印戒样或胞质透明。ISMC不仅存在单纯型,也可呈混合型。ISMC具有高侵袭性的生物学特性。CK7、p16,p40和(或)p63表达呈癌巢周栅栏状阳性或局灶表达。AB/PAS染色阳性。人乳头状病毒(HPV)检测结果:ISMC中HPV16/18阳性(1/4),术前检测出HPV16/18阳性(4/6);SMILE组织中HPV阴性。ISMC均表达PD-L1。成功随访8例ISMC患者,时间4~39个月(平均20.50月),4例SMILE患者,时间1~25个月(平均8.25月),随访患者均存活,1例ISMC术后出现多脏器转移。结论:ISMC具有独特的形态学特征及免疫表型,表现为高侵袭性和不良预后。所有ISMC均呈PD-L1阳性,提示所有患者均可从PD-L1免疫治疗中获益。
5.The Mechanism of Blue Light in Inactivating Microorganisms and Its Applications in The Food and Medical Fields
Ruo-Hong BI ; Rong-Qian WU ; Yi LÜ ; Xiao-Fei LIU
Progress in Biochemistry and Biophysics 2025;52(5):1219-1228
Blue light inactivation technology, particularly at the 405 nm wavelength, has demonstrated distinct and multifaceted mechanisms of action against both Gram-positive and Gram-negative bacteria, offering a promising alternative to conventional antibiotic therapies. For Gram-positive pathogens such as Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus (MRSA), the bactericidal effects are primarily mediated by endogenous porphyrins (e.g., protoporphyrin III, coproporphyrin III, and uroporphyrin III), which exhibit strong absorption peaks between 400-430 nm. Upon irradiation, these porphyrins are photoexcited to generate cytotoxic reactive oxygen species (ROS), including singlet oxygen, hydroxyl radicals, and superoxide anions, which collectively induce oxidative damage to cellular components. Early studies by Endarko et al. revealed that (405±5) nm blue light at 185 J/cm² effectively inactivated L. monocytogenes without exogenous photosensitizers, supporting the hypothesis of intrinsic photosensitizer involvement. Subsequent work by Masson-Meyers et al. demonstrated that 405 nm light at 121 J/cm² suppressed MRSA growth by activating endogenous porphyrins, leading to ROS accumulation. Kim et al. further elucidated that ROS generated under 405 nm irradiation directly interact with unsaturated fatty acids in bacterial membranes, initiating lipid peroxidation. This process disrupts membrane fluidity, compromises structural integrity, and impairs membrane-bound proteins, ultimately causing cell death. In contrast, Gram-negative bacteria such as Salmonella, Escherichia coli, Helicobacter pylori, Pseudomonas aeruginosa, and Acinetobacter baumannii exhibit more complex inactivation pathways. While endogenous porphyrins remain central to ROS generation, studies reveal additional photodynamic contributors, including flavins (e.g., riboflavin) and bacterial pigments. For instance, H. pylori naturally accumulates protoporphyrin and coproporphyrin mixtures, enabling efficient 405 nm light-mediated inactivation without antibiotic resistance concerns. Kim et al. demonstrated that 405 nm light at 288 J/cm² inactivates Salmonella by inducing genomic DNA oxidation (e.g., 8-hydroxy-deoxyguanosine formation) and disrupting membrane functions, particularly efflux pumps and glucose uptake systems. Huang et al. highlighted the enhanced efficacy of pulsed 405 nm light over continuous irradiation for E. coli, attributing this to increased membrane damage and optimized ROS generation through frequency-dependent photodynamic effects. Environmental factors such as temperature, pH, and osmotic stress further modulate susceptibility, sublethal stress conditions (e.g., high salinity or acidic environments) weaken bacterial membranes, rendering cells more vulnerable to subsequent ROS-mediated damage. The 405 nm blue light inactivates drug-resistant Pseudomonas aeruginosa through endogenous porphyrins, pyocyanin, and pyoverdine, with the inactivation efficacy influenced by bacterial growth phase and culture medium composition. Intriguingly, repeated 405 nm exposure (20 cycles) failed to induce resistance in A. baumannii, with transient tolerance linked to transient overexpression of antioxidant enzymes (e.g., superoxide dismutase) or stress-response genes (e.g., oxyR). For Gram-positive bacteria, porphyrin abundance dictates sensitivity, whereas in Gram-negative species, membrane architecture and accessory pigments modulate outcomes. Critically, ROS-mediated damage is nonspecific, targeting DNA, proteins, and lipids simultaneously, thereby minimizing resistance evolution. The 405 nm blue light technology, as a non-chemical sterilization method, shows promise in medical and food industries. It enhances infection control through photodynamic therapy and disinfection, synergizing with red light for anti-inflammatory treatments (e.g., acne). In food processing, it effectively inactivates pathogens (e.g., E. coli, S. aureus) without altering food quality. Despite efficacy against multidrug-resistant A. baumannii, challenges include device standardization, limited penetration in complex materials, and optimization of photosensitizers/light parameters. Interdisciplinary research is needed to address these limitations and scale applications in healthcare, food safety, and environmental decontamination.
6.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
7.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
8.Frequency and molecular basis of CD36 deficiency in Xinjiang, China
Jin QIU ; Fei LI ; Qiang LI ; Rubin WANG ; ; Jing LIU ; Wei CHEN
Chinese Journal of Blood Transfusion 2025;38(5):629-636
Objective: To investigate the distribution characteristics of CD36 antigen in healthy individuals in Xinjiang, China and analyze the molecular mechanisms underlying CD36 deficiency. Methods: Flow cytometry was used to assess CD36 antigen expression on platelets from 881 healthy individuals who underwent physical examinations between June and August 2023. Differences in CD36 antigen distribution among ethnic groups were compared, and genotyping and third-generation sequencing were conducted on samples with CD36 deficiency. Results: Among the 881 samples, 4 cases (0.5%) of CD36 type Ⅱ deficiency were identified. The deficiency frequency was 0.7% (3/430) in Han individuals and 0.3% (1/363) in Uygur individuals, with no statistically significant difference between the two groups (P>0.05). No mutations were detected in the coding regions of the deficient samples. Two samples exhibited a (TG)11 in intron 3. Among the 12 linked mutation sites, g. 55589 G>A was mutated to g. 55589G Del, while g. 55593 A del did not occur; however, g. 55591A>T was observed nearby. Additionally, 52742insGAAAA was present in 100% of the (TG)11 haplotypes, potentially representing a novel linked mutation. Conclusion: This study indicates that the positive frequency of CD36 antigen in Xinjiang is relatively high, suggesting a low risk of alloimmune diseases in clinical practice. The (TG)11 in intron 3 is not universally present in all CD36 type Ⅱ deficiency cases, and the number of linked mutation sites extends beyond the previously reported 12.

Result Analysis
Print
Save
E-mail