1.Gandou Fumu Decoction improves liver steatosis by inhibiting hepatocyte ferroptosis in mice with Wilson's disease through the GPX4/ACSL4/ALOX15 signaling pathway.
Mengying ZHANG ; Chenling ZHAO ; Liwei TIAN ; Guofang YU ; Wenming YANG ; Ting DONG
Journal of Southern Medical University 2025;45(7):1471-1478
OBJECTIVES:
To explore the mechanism of Gandou Fumu Decoction (GDFMD) for improving Wilson's disease (WD) in tx-J mice.
METHODS:
With 6 syngeneic wild-type mice as the control group, 30 tx-J mice were randomized into WD model group, low-, medium- and high-dose GDFMD treatment groups, and Fer-1 treatment group. Saline (in control and model groups) and GDFMD (3.48, 6.96 or 13.92 g/kg) were administered by gavage, and Fer-1 was injected intraperitoneally once daily for 14 days. Oil red and HE staining were used to observe lipid deposition and pathological conditions in the liver tissue; ALT, AST, albumin, AKP levels were determined to assess liver function of the mice. Western blotting and RT-qPCR were used to detect hepatic protein and mRNA expressions of GPX4, ACSL4, ALOX15, FTH1, FLT, TFR1, FAS, SCD1, and ACOX1, and Fe2+, MDA, ROS, SOD, GSH and 4-HNE levels were analyzed to assess oxidative stress.
RESULTS:
The mouse models of WD showed obvious fatty degeneration in the liver tissue significantly increased serum levels of ALT, AST and AKP, decreased albumin level, increased Fe2+, MDA, ROS, 4-HNE levels, decreased SOD and GSH levels (P<0.05), lowered protein expressions of ACOX1, GPX4, FTH1, FLT, FAS, and SCD1, and increased protein contents of TFR1, ACSL4 and ALOX15 in the liver. Treatment with GDFMD and Fer-1 improved liver histopathology and liver function of the mouse models, decreased the levels of Fe2+, MDA and ROS, increased SOD and GSH levels, and reversed the changes in hepatic protein expressions.
CONCLUSIONS
GDFMD improves liver steatosis in mouse models of WD possibly by inhibiting hepatocyte ferroptosis through the GPX4/ACSL4/ALOX15 signaling pathway.
Animals
;
Ferroptosis/drug effects*
;
Mice
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Hepatolenticular Degeneration/drug therapy*
;
Hepatocytes/metabolism*
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Fatty Liver/metabolism*
;
Arachidonate 15-Lipoxygenase/metabolism*
;
Coenzyme A Ligases/metabolism*
;
Liver/metabolism*
;
Male
2.Arachidonic acid Alox15/12-HETE signaling inhibits vascular calcification.
Ying-Chun HAN ; Ji-Chao ZHANG ; Cong-Cong ZHANG ; Jie DU
Acta Physiologica Sinica 2021;73(4):571-576
This study aims to explore the effects of arachidonic acid lipoxygenase metabolism in vascular calcification. We used 5/6 nephrectomy and high-phosphorus feeding to establish a model of vascular calcification in mice. Six weeks after nephrectomy surgery, vascular calcium content was measured, and Alizarin Red S and Von Kossa staining were applied to detect calcium deposition in aortic arch. Control aortas and calcified aortas were collected for mass spectrometry detection of arachidonic acid metabolites, and active molecules in lipoxygenase pathway were analyzed. Real-time quantitative PCR was used to detect changes in the expression of lipoxygenase in calcified aortas. Lipoxygenase inhibitor was used to clarify the effect of lipoxygenase metabolic pathways on vascular calcification. The results showed that 6 weeks after nephrectomy surgery, the aortic calcium content of the surgery group was significantly higher than that of the sham group (P < 0.05). Alizarin Red S staining and Von Kossa staining showed obvious calcium deposition in aortic arch from surgery group, indicating formation of vascular calcification. Nine arachidonic acid lipoxygenase metabolites were quantitated using liquid chromatography/mass spectrometry (LC-MS) analysis. The content of multiple metabolites (12-HETE, 11-HETE, 15-HETE, etc.) was significantly increased in calcified aortas, and the most abundant and up-regulated metabolite was 12-HETE. Furthermore, we examined the mRNA levels of metabolic enzymes that produce 12-HETE in calcified blood vessels and found the expression of arachidonate lipoxygenase-15 (Alox15) was increased. Blocking Alox15/12-HETE by Alox15 specific inhibitor PD146176 significantly decreased the plasma 12-HETE content, promoted calcium deposition in aortic arch and increased vascular calcium content. These results suggest that the metabolism of arachidonic acid lipoxygenase is activated in calcified aorta, and the Alox15/12-HETE signaling pathway may play a protective role in vascular calcification.
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid
;
Animals
;
Arachidonate 12-Lipoxygenase
;
Arachidonate 15-Lipoxygenase/metabolism*
;
Arachidonic Acid
;
Hydroxyeicosatetraenoic Acids
;
Lipoxygenase/metabolism*
;
Mice
;
Signal Transduction
;
Vascular Calcification
3.In Silico System Pharmacology for the Potential Bioactive Ingredients Contained in Xingnaojing Injection () and Its Material Basis for Sepsis Treatment.
Shi-Tang MA ; Cheng-Tao FENG ; You-Xi XIONG ; Xiao-Lin ZHANG ; Cheng-Gui MIAO ; Hao YU
Chinese journal of integrative medicine 2018;24(12):944-949
OBJECTIVE:
To elucidate the action mechanism of Xingnaojing Injection (, XNJI) for sepsis, and to target screen the potential bioactive ingredients.
METHODS:
An integrated protocol that combines in silico target screen (molecular docking) and database mapping was employed to find the potential inhibitors from XNJI for the sepsis-related targets and to establish the compound-target (C-T) interaction network. The XNJI's bioactive components database was investigated and the sepsis-associated targets were comprehensively constructed; the 3D structure of adenosine receptor A2a and 5-lipoxygenase proteins were established and evaluated with homology modeling method; system network pharmacology for sepsis treatment was studied between the bioactive ingredients and the sepsis targets using computational biology methods to distinguish inhibitors from non inhibitors for the selected sepsis-related targets and C-T network construction.
RESULTS:
Multiple bioactive compounds in the XNJI were found to interact with multiple sepsis targets. The 32 bioactive ingredients were generated from XNJI in pharmacological system, and 21 potential targets were predicted to the sepsis disease; the biological activities for some potential inhibitors had been experimentally confirmed, highlighting the reliability of in silico target screen. Further integrated C-T network showed that these bioactive components together probably display synergistic action for sepsis treatment.
CONCLUSIONS
The uncovered mechanism may offer a superior insight for understanding the theory of the Chinese herbal medicine for combating sepsis. Moreover, the potential inhibitors for the sepsis-related targets may provide a good source to find new lead compounds against sepsis disease.
Arachidonate 5-Lipoxygenase
;
metabolism
;
Computer Simulation
;
Drug Evaluation, Preclinical
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Humans
;
Injections
;
Phytochemicals
;
therapeutic use
;
Receptor, Adenosine A2A
;
metabolism
;
Reproducibility of Results
;
Sepsis
;
drug therapy
;
metabolism
4.An oriental melon 9-lipoxygenase gene CmLOX09 response to stresses, hormones, and signal substances.
Li-Jun JU ; Chong ZHANG ; Jing-Jing LIAO ; Yue-Peng LI ; Hong-Yan QI
Journal of Zhejiang University. Science. B 2018;19(8):596-609
In plants, lipoxygenases (LOXs) play a crucial role in biotic and abiotic stresses. In our previous study, five 13-LOX genes of oriental melon were regulated by abiotic stress but it is unclear whether the 9-LOX is involved in biotic and abiotic stresses. The promoter analysis revealed that CmLOX09 (type of 9-LOX) has hormone elements, signal substances, and stress elements. We analyzed the expression of CmLOX09 and its downstream genes-CmHPL and CmAOS-in the leaves of four-leaf stage seedlings of the oriental melon cultivar "Yumeiren" under wound, hormone, and signal substances. CmLOX09, CmHPL, and CmAOS were all induced by wounding. CmLOX09 was induced by auxin (indole acetic acid, IAA) and gibberellins (GA3); however, CmHPL and CmAOS showed differential responses to IAA and GA3. CmLOX09, CmHPL, and CmAOS were all induced by hydrogen peroxide (H2O2) and methyl jasmonate (MeJA), while being inhibited by abscisic acid (ABA) and salicylic acid (SA). CmLOX09, CmHPL, and CmAOS were all induced by the powdery mildew pathogen Podosphaera xanthii. The content of 2-hexynol and 2-hexenal in leaves after MeJA treatment was significantly higher than that in the control. After infection with P. xanthii, the diseased leaves of the oriental melon were divided into four levels-levels 1, 2, 3, and 4. The content of jasmonic acid (JA) in the leaves of levels 1 and 3 was significantly higher than that in the level 0 leaves. In summary, the results suggested that CmLOX09 might play a positive role in the response to MeJA through the hydroperoxide lyase (HPL) pathway to produce C6 alcohols and aldehydes, and in the response to P. xanthii through the allene oxide synthase (AOS) pathway to form JA.
Abscisic Acid
;
Acetates/chemistry*
;
Aldehyde-Lyases/metabolism*
;
Aldehydes/chemistry*
;
Cucurbitaceae/genetics*
;
Cyclopentanes/chemistry*
;
Cytochrome P-450 Enzyme System/metabolism*
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Hormones/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Intramolecular Oxidoreductases/metabolism*
;
Lipoxygenase/metabolism*
;
Oxylipins/chemistry*
;
Plant Leaves/genetics*
;
Plant Proteins/metabolism*
;
Promoter Regions, Genetic
;
Salicylic Acid/chemistry*
;
Seedlings/metabolism*
;
Signal Transduction
;
Stress, Physiological
;
Transgenes
5.Short-term intensive atorvastatin therapy improves endothelial function partly via attenuating perivascular adipose tissue inflammation through 5-lipoxygenase pathway in hyperlipidemic rabbits.
Xiaoqiao WANG ; Yongqin LIN ; Niansang LUO ; Zhongqing CHEN ; Miaoning GU ; Jingfeng WANG ; Yangxin CHEN ;
Chinese Medical Journal 2014;127(16):2953-2959
BACKGROUNDAtherosclerosis is a kind of disease with multiple risk factors, of which hyperlipidemia is a major classical risk factor resulting in its pathogenesis and development. The aim of this study was to determine the effects of short-term intensive atorvastatin (IA) therapy on vascular endothelial function and explore the possible mechanisms that may help to explain the clinical benefits from short-term intensive statin therapy.
METHODSAfter exposure to high-fat diet (HFD) for 8 weeks, the animals were, respectively, treated with IA or low-dose atorvastatin (LA) for 5 days. Blood lipids, C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO), endothelin-1 (ET-1), and endothelium-dependent vasorelaxation function were, respectively, measured. mRNA and protein expression of CRP, TNF-α, IL-6, macrophage chemoattractant protein-1 (MCP-1), and 5-lipoxygenase (5-LO) were also evaluated in pericarotid adipose tissue (PCAT) and cultured adipocytes.
RESULTSHFD increased serum inflammatory factor levels; induced significant hyperlipidemia and endothelial dysfunction, including imbalance between NO and ET-1; enhanced inflammatory factors and 5-LO expression; and promoted macrophage infiltration into adipose tissue. Five-day IA therapy could significantly decrease serum inflammatory factor levels and their expression in PCAT; restore the balance between NO and ET-1; and improve endothelial function and macrophage infiltration without significant changes in blood lipids. However, all of the above were not observed in LA therapy. In vitro experiment found that lipopolysaccharide (LPS) enhanced the expression of inflammatory factors and 5-LO in cultured adipocytes, which could be attenuated by short-time (6 hours) treatment of high-dose (5 µmol/L) but not low-dose (0.5 µmol/L) atorvastatin. In addition, inhibiting 5-LO by Cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC, a potent and direct 5-LO inhibitor) could significantly downregulate the above-mentioned gene expression in LPS-treated adipocytes.
CONCLUSIONShort-term IA therapy could significantly ameliorate endothelial dysfunction induced by HFD, which may be partly due to attenuating inflammation of PCAT through inhibiting 5-LO pathway.
Adipose Tissue ; drug effects ; immunology ; Animals ; Arachidonate 5-Lipoxygenase ; metabolism ; Atorvastatin Calcium ; Heptanoic Acids ; therapeutic use ; Hyperlipidemias ; drug therapy ; immunology ; Inflammation ; drug therapy ; immunology ; Lipid Metabolism ; drug effects ; Male ; Pyrroles ; therapeutic use ; Rabbits
6.Garden rue inhibits the arachidonic acid pathway, scavenges free radicals, and elevates FRAP: role in inflammation.
Manjir Sarma KATAKI ; Bibhuti B KAKOTI ; Biman BHUYAN ; Ananya RAJKUMARI ; Prakash RAJAK
Chinese Journal of Natural Medicines (English Ed.) 2014;12(3):172-179
AIM:
In the present study, the anti-inflammatory and antioxidant activities of the methanol extract of Ruta graveolens leaves (RG-M) were evaluated using various in vivo and in vitro models.
METHOD:
For anti-inflammatory activity, RG-M was administered by the oral route (p.o.) in a carrageenan-induced paw edema model, and by the intraperitoneal route (i.p.) in an exudative inflammation model. In vitro inhibition of cyclooxygenase and lipoxygenase enzymes was evaluated. In vitro antioxidant activity was also examined. Endogenous antioxidant status was further evaluated by ferric reducing ability of plasma model.
RESULTS:
RG-M showed maximum inhibition of carrageenan-induced edema (100 mg·kg⁻¹ - 33.36%; 200 mg·kg⁻¹ - 45.32% and 400 mg·kg⁻¹ - 56.28%). In the exudative inflammation model, a significant reduction in leukocyte migration (200 mg·kg⁻¹ - 54.75% and 400 mg·kg⁻¹ - 77.97%) and protein exudation (200 mg·kg⁻¹ - 31.14% and 400 mg·kg⁻¹ - 49.91%) were observed. RG-M also exhibited inhibition of COX-1 (IC50 182.27 μg·mL⁻¹) and COX-2 (IC50 190.16 μg·mL⁻¹) as well as 5-LOX (IC50 215.71 μg·mL⁻¹). Antioxidant activity was significant with improved endogenous antioxidant status.
CONCLUSION
The results demonstrated the anti-inflammatory and antioxidant activity of RG-M with potent inhibitory effects on the arachidonic acid pathways.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
therapeutic use
;
Antioxidants
;
pharmacology
;
therapeutic use
;
Arachidonic Acid
;
metabolism
;
Carrageenan
;
Cyclooxygenase 1
;
metabolism
;
Cyclooxygenase 2
;
metabolism
;
Cyclooxygenase Inhibitors
;
pharmacology
;
therapeutic use
;
Disease Models, Animal
;
Edema
;
drug therapy
;
Exudates and Transudates
;
Ferric Compounds
;
metabolism
;
Inflammation
;
drug therapy
;
metabolism
;
Leukocytes
;
metabolism
;
Lipoxygenase Inhibitors
;
pharmacology
;
therapeutic use
;
Lipoxygenases
;
metabolism
;
Male
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Plant Leaves
;
Rats, Wistar
;
Ruta
7.Cyclooxygenases, lipoxygenases, their targeted drugs and the prevention of Alzheimer's disease.
Jiao-Ning SHEN ; Liu-Xin XU ; Rui WANG
Acta Pharmaceutica Sinica 2013;48(12):1743-1754
Many studies have shown that chronic inflammation occurs in the brain of patients with Alzheimer's disease (AD). It is well known that long-term administration of non-steroidal anti-inflammatory drugs (NSAIDs) can alleviate the cognitive decline of AD patient and elderly. Several inflammatory cytokines produced in the metabolism of arachidonic acid (AA) are closely related to inflammatory diseases. Lipoxygenases (LOXs) and cyclooxygenases (COXs) play a crucial role in the AA network, the products eicosanoids have an important impact on the progression of AD. Although there are many arguments and conflicting evidence, currently LOXs and COXs are still the hot topics in the research on AD pathogenesis and drug development. Here, we review the progress in research on COXs and LOXs, including their actions on CNS and their association with AD, and explore the feasibility of LOXs and COXs as targets for the drugs to prevent and/or treat AD.
Alzheimer Disease
;
drug therapy
;
enzymology
;
prevention & control
;
Amyloid beta-Peptides
;
metabolism
;
Animals
;
Anti-Inflammatory Agents, Non-Steroidal
;
pharmacology
;
therapeutic use
;
Arachidonic Acid
;
metabolism
;
Brain
;
metabolism
;
Cyclooxygenase 1
;
metabolism
;
Cyclooxygenase 2
;
metabolism
;
Cyclooxygenase Inhibitors
;
therapeutic use
;
Humans
;
Lipoxygenase Inhibitors
;
therapeutic use
;
Lipoxygenases
;
metabolism
;
Prostaglandin H2
;
metabolism
;
Prostaglandin-Endoperoxide Synthases
;
metabolism
8.Benzoxazole Derivative B-98 Ameliorates Dextran Sulfate Sodium-induced Acute Murine Colitis and the Change of T Cell Profiles in Acute Murine Colitis Model.
Eun Mi SONG ; Sung Ae JUNG ; Jong Soo LEE ; Seung Eun KIM ; Ki Nam SHIM ; Hye Kyung JUNG ; Kwon YOO ; Hae Young PARK
The Korean Journal of Gastroenterology 2013;62(1):33-41
BACKGROUND/AIMS: The unique role of enzyme 5-lipoxygenase (5-LO) in the production of leukotrienes makes it a therapeutic target for inflammatory bowel disease (IBD). The aim of this study was to evaluate the effects of B-98, a newly synthesized benzoxazole derivatives and a novel 5-LO inhibitor, in a mouse model of IBD induced by dextran sulfate sodium (DSS). METHODS: C57BL/6 mice were randomly assigned to four groups: normal control, DSS colitis (DSS+saline), low dose B-98 (DSS+B-98 20 mg/kg) and high dose B-98 (DSS+B-98 100 mg/kg). B-98 was administered with 3% DSS intraperitoneally. The severity of the colitis was assessed via the disease activity index (DAI), colon length, and histopathologic grading. The production of inflammatory cytokines interleukin (IL)-6 was determined by RT-PCR. Th cells were examined for the proportion of Th1 cell, Th2 cell, Th9 cell, Th17 cell and Treg cell using intracellular cytometry. RESULTS: The B-98 group showed lower DAI, less shortening of the colon length and lower histopathologic grading compared with the DSS colitis group (p<0.01). The expression of IL-6 in colonic tissue was significantly lower in the B-98 groups than the DSS colitis group (p<0.05). The cellular profiles revealed that the Th1, Th9 and Th17 cells were increased in the DSS colitis group compared to the B-98 group (p<0.05). CONCLUSIONS: Our results suggest that acute intestinal inflammation is reduced in the group treated with B-98 by Th1, Th9 and Th17 involved cellular immunity.
Acute Disease
;
Animals
;
Arachidonate 5-Lipoxygenase/chemistry/metabolism
;
Benzoxazoles/chemistry/*pharmacology
;
Colitis/chemically induced/pathology/*prevention & control
;
Colon/drug effects/pathology/physiology
;
Dextran Sulfate/toxicity
;
Disease Models, Animal
;
Forkhead Transcription Factors/metabolism
;
Injections, Intraperitoneal
;
Interleukin-6/genetics/metabolism
;
Lipoxygenase Inhibitors/chemistry/*pharmacology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Severity of Illness Index
;
T-Lymphocytes/classification/*drug effects/metabolism
9.Association of 5-lipoxygenase expression and clinicopathological factors in colorectal carcinoma.
Yue-chun LI ; Dong-xia WANG ; Cai-shi LI ; Zhen-peng YE ; Zhi-ming WU ; Jian-hua CHEN
Chinese Journal of Gastrointestinal Surgery 2013;16(9):895-897
OBJECTIVETo examine the association of 5-lipoxygenase (5-LOX) expression with clinicopathological factors in colorectal cancer.
METHODSImmunohistochemical stain was used to detect the 5-LOX expression in 52 resected specimens of colorectal cancer. The association between 5-LOX expression and clinicopathological factors was examined.
RESULTSThe positive rate of 5-LOX expression in 52 specimens of colorectal carcinoma was 73.1% (38/52). In 41 colorectal cancer specimens with lymph node metastasis, the positive rate of 5-LOX expression was higher than that in the specimens without metastasis (87.8% vs. 18.2%, P<0.05). The positive rate of 5-LOX expression in the specimens with deep infiltration (T3 and T4) was higher than that in the specimens with superficial infiltration (T1 and T2) (81.1% vs. 53.3%, P<0.05). The positive rate of 5-LOX expression in TNM stage III and IIII cancer was higher than that in stage I and II (79.5% vs. 53.8%, P<0.05). The positive rate of 5-LOX expression in cancers of poor differentiation and non-differentiation adenocarcinoma was higher than that of well and moderately differentiated cancer (100% vs. 50.0%, P<0.05). There were no significant differences of 5-LOX expression with tumor size,vascular invasion and peritoneal dissemination.
CONCLUSION5-LOX expression in colorectal carcinoma is closely associated with lymph node metastasis, infiltration depth, differentiation degree and TNM stage.
Adult ; Aged ; Aged, 80 and over ; Arachidonate 5-Lipoxygenase ; metabolism ; Colorectal Neoplasms ; enzymology ; pathology ; Female ; Humans ; Lymphatic Metastasis ; Male ; Middle Aged ; Neoplasm Staging
10.Expression of 5-lipoxygenase in hippocampal CA1 neuronal damage following global cerebral ischemia in rats.
Wenjian CHEN ; Chengtan LI ; Jianbo ZHAO ; Xiaoyan ZHANG ; Huayang HAN ; Erqing WEI ; Lihui ZHANG
Journal of Zhejiang University. Medical sciences 2013;42(1):61-66
OBJECTIVETo determine 5-lipoxygenase (5-LOX) expression and the effect of zileuton, a selective 5-LOX inhibitor,on hippocampal neuron injury induced by global cerebral ischemia in rats.
METHODSGlobal cerebral ischemia was induced by bilateral common carotid artery occlusion combined with hypotension in rats. 5-LOX expression was detected by Western blot analyses and 5-LOX localization was visualized by immunohistochemistry and double immunofluorescence methods. The 5-LOX inhibitor zileuton (10, 30, 50 mg/kg) was orally administered for 3 d after ischemia.
RESULTSThe 5-LOX expression was increased in the ischemic hippocampus on d1-7 (peaked at d3), and 5-LOX protein was primarily localized in neurons and translocated to the nuclei in the hippocampal CA1 region after ischemia. The 5-LOX inhibitor zileuton (30, 50 mg/kg) reduced ischemia-induced hippocampal neurons death 3d after ischemia.
CONCLUSION5-LOX is involved in global cerebral ischemic damage in rats, and the 5-LOX inhibitor zileuton has a protective effect on neuronal damage in the rat hippocampus following global cerebral ischemia.
Animals ; Arachidonate 5-Lipoxygenase ; metabolism ; physiology ; Brain Ischemia ; metabolism ; pathology ; CA1 Region, Hippocampal ; metabolism ; pathology ; Disease Models, Animal ; Hydroxyurea ; analogs & derivatives ; pharmacology ; Lipoxygenase Inhibitors ; pharmacology ; Male ; Neurons ; drug effects ; pathology ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail