1.Effect of Buyang Huanwu Decoction on mRNA Expressions of Aorta Rho Kinase and NF-κB p65 in Atherosclerosis Model Rats.
Hong-zhen ZHANG ; Li LI ; Rui JIAO ; Ying ZHANG ; Yan QIAN
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(12):1495-1500
OBJECTIVETo observe the effect of Buyang Huanwu Decoction (BYHWD), a representative formula of qi benefiting blood activating method on aorta Rho associated coiled-coil forming protein serine/threonine kinase (Rhokinase, ROCK) and nuclear transcription factor kappa B (NF-κB) p65 mRNA expressions and levels of blood lipids in atherosclerosis (AS) model rats.
METHODSThe AS rat model was prepared by vitamin D3 and high fat diet. Totally 60 rats were randomly divided into 6 groups, i.e., the normal control group, the model group, the low dose BYHWD group (10 g/kg), the high dose BYHWD group (20 g/kg), the Simvastatin control group (0.6 mg/kg), and the BYHWD prevention group (10 g/kg), 10 in each group. After successful modeling all medication was intervened for 28 days. Expression levels oxidized low density lipoprotein (ox-LDL) were detected by ELISA. Levels of TG, TC, LDL-C, HDL-C were determined by enzyme method. Pathological changes of aortic tissue were observed under light microscope. mRNA expressions of Rho kinase and NF-κB p65 in aorta were detected by real time (RT) PCR.
RESULTSHigh fat diet and peritoneal injection of vitamin D3 could induce AS rat model. Typical atheromatous plaque formed in aorta of AS model rats. Compared with the normal control group, levels of TC, TG, LDL-C, and ox-LDL significantly increased in the model group, but the HDL-C level decreased (P < 0.01). Compared with the model group, levels of TC, TG, LDL-C, and ox-LDL all decreased, but HDL-C increased in low and high dose BYHWD groups, the Simvastatin control group, and the BYHWD prevention group (P < 0.05, P < 0.01). Compared with the low dose BYHWD group, above-mentioned indices were more obviously lowered in the high dose BYHWD group, the Simvastatin control group, and the BYHWD prevention group (P < 0.05). Compared with the normal control group, mRNA expression levels of Rho kinase and NF-κB p65 significantly increased in the model group (P < 0.01). Compared with the model group, mRNA expressions of Rho kinase and NF-κB p65 obviously decreased in low and high dose BYHWD groups, the Simvastatin control group, and the BYHWD prevention group (P < 0.01). Compared with the low dose BYHWD group, the two indicators were more obviously lowered in the high dose BYHWD group, the Simvastatin control group, and the BYHWD prevention group (P < 0.05). But there was no statistical difference in blood lipids levels, mRNA expression levels of Rho kinase or NF-κB p65 among the high dose BYHWD group, the Simvastatin control group, and the BYHWD prevention group (P >0. 05).
CONCLUSIONSBYHWD could down-regulate mRNA expression levels of Rho kinase and NF-κB p65, lower levels of blood lipids, and fight against AS. Suppressing Rho kinase pathway might be one of its mechanisms.
Animals ; Aorta ; Atherosclerosis ; genetics ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Gene Expression ; drug effects ; Lipids ; Lipoproteins, LDL ; NF-kappa B ; metabolism ; RNA, Messenger ; metabolism ; Rats ; Simvastatin ; Transcription Factor RelA ; metabolism ; rho-Associated Kinases ; metabolism
2.Effect of ferulic acid on cholesterol efflux in macrophage foam cell formation and potential mechanism.
China Journal of Chinese Materia Medica 2015;40(3):533-537
The formation of macrophage-derived foam cells is a typical feature of atherosclerosis (AS). Reverse cholesterol efflux (RCT) is one of important factors for the formation of macrophage foam cells. In this study, macrophage form cells were induced by oxidized low density lipoprotein (ox-LDL) and then treated with different concentrations of ferulic acid, so as to observe the effect of ferulic acid on the intracellular lipid metabolism in the ox-LDL-induced macrophage foam cell formation, the cholesterol efflux and the mRNA expression and protein levels of ATP binding cassette transporter A1 (ABCA1) and ATP binding cassette transporter G1 (ABCG1) that mediate cholesterol efflux, and discuss the potential mechanism of ferulic acid in resisting AS. According to the findings, compared with the control group, the ox-LDL-treated group showed significant increase in intracellular lipid content, especially for the cholesterol content; whereas the intracellular lipid accumulation markedly decreased, after the treatment with ferulic acid. The data also demonstrated that the mRNA and protein expressions of ABCA1 and ABCG1 significantly increased after macrophage foam cells were treated with different concentrations of ferulic acid. In summary, ferulic acid may show the anti-atherosclerosis effect by increasing the surface ABCA1 and ABCG1 expressions of macrophage form cells and promoting cholesterol efflux.
ATP Binding Cassette Transporter 1
;
analysis
;
genetics
;
ATP Binding Cassette Transporter, Sub-Family G, Member 1
;
ATP-Binding Cassette Transporters
;
analysis
;
genetics
;
Animals
;
Cells, Cultured
;
Cholesterol
;
metabolism
;
Coumaric Acids
;
pharmacology
;
Foam Cells
;
drug effects
;
metabolism
;
Lipoproteins
;
analysis
;
genetics
;
Mice
3.Role of Wnt/β-catenin signaling pathway in the mechanism of calcification of aortic valve.
Gang-jian GU ; Tao CHEN ; Hong-min ZHOU ; Ke-xiong SUN ; Jun LI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):33-36
Aortic valve calcification is a common disease in the elderly, but its cellular and molecular mechanisms are not clear. In order to verify the hypothesis that Wnt/β-catenin signaling pathway is involved in the process of calcification of aortic valve, porcine aortic valve interstitial cells (VICs) were isolated, cultured and stimulated with oxidized low density lipoprotein (ox-LDL) for 48 h to induce the differentiation of VICs into osteoblast-like cells. The key proteins and genes of Wnt/β-catenin signaling pathway, such as glycogen synthase kinase 3β (GSK-3β) and β-catenin, were detected by using Western blotting and real-time polymerase chain reaction (PCR). The results showed that the VICs managed to differentiate into osteoblast-like cells after the stimulation with ox-LDL and the levels of proteins and genes of GSK-3β and β-catenin were increased significantly in VICs after stimulation for 48 h (P<0.05). It is suggested that Wnt/β-catenin signaling pathway may play a key role in the differentiation of VICs into osteoblast-like cells and make great contribution to aortic valve calcification.
Alkaline Phosphatase
;
genetics
;
metabolism
;
Animals
;
Aortic Valve
;
metabolism
;
pathology
;
Aortic Valve Stenosis
;
Blotting, Western
;
Bone Morphogenetic Protein 2
;
genetics
;
metabolism
;
Calcinosis
;
Cell Differentiation
;
drug effects
;
genetics
;
Cells, Cultured
;
Gene Expression
;
drug effects
;
Glycogen Synthase Kinase 3
;
genetics
;
metabolism
;
Lipoproteins, LDL
;
pharmacology
;
Osteoblasts
;
drug effects
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Swine
;
Wnt Signaling Pathway
;
genetics
;
physiology
;
beta Catenin
;
genetics
;
metabolism
4.Effect of Bilirubin on Triglyceride Synthesis in Streptozotocin-Induced Diabetic Nephropathy.
Jianwei XU ; Eun Seong LEE ; Seon Ha BAEK ; Shin Young AHN ; Sejoong KIM ; Ki Young NA ; Dong Wan CHAE ; Ho Jun CHIN
Journal of Korean Medical Science 2014;29(Suppl 2):S155-S163
We aimed to elucidate the effect of bilirubin on dyslipidemia and nephropathy in a diabetes mellitus (DM) type I animal model. Sprague-Dawley rats were separated into control, DM, and bilirubin-treated DM (Bil) groups. The Bil group was injected intraperitoneally with 60 mg/kg bilirubin 3 times per week and hepatoma cells were cultured with bilirubin at a concentration of 0.3 mg/dL. The Bil group showed lower serum creatinine levels 5 weeks after diabetes onset. Bilirubin treatment also decreased the amount of mesangial matrix, lowered the expression of renal collagen IV and transforming growth factor (TGF)-beta1, and reduced the level of apoptosis in the kidney, compared to the DM group. These changes were accompanied by decreased tissue levels of hydrogen superoxide and NADPH oxidase subunit proteins. Bilirubin decreased serum total cholesterol, high-density lipoprotein cholesterol (HDL-C), free fatty acids, and triglycerides (TGs), as well as the TG content in the liver tissues. Bilirubin suppressed protein expression of LXRalpha, SREBP-1, SCD-1, and FAS, factors involved in TG synthesis that were elevated in the livers of DM rats and hepatoma cells under high-glucose conditions. In conclusion, bilirubin attenuates renal dysfunction and dyslipidemia in diabetes by suppressing LXRalpha and SREBP-1 expression and oxidative stress.
Animals
;
Bilirubin/pharmacology/*therapeutic use
;
Cell Line, Tumor
;
Creatine/blood
;
Diabetes Mellitus, Experimental/chemically induced/complications/*pathology
;
Diabetic Nephropathies/*drug therapy/etiology
;
Disease Models, Animal
;
Kidney/pathology
;
Lipoproteins, HDL/blood
;
Liver/metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
NADPH Oxidase/metabolism
;
Orphan Nuclear Receptors/antagonists & inhibitors/genetics/metabolism
;
Oxidative Stress/drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/metabolism
;
Streptozocin/toxicity
;
Triglycerides/analysis/*biosynthesis/blood
5.Effects of carbon disulfide inhalation on lipid levels of ApoE gene knockout mice and C57BL/6J mice.
Jing LIU ; Chunhui NI ; Lu DING ; Shouyu WANG ; Shanlei QIAO ; Jinglian CAO ; Li ZHONG ; Baoli ZHU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(11):844-847
OBJECTIVETo investigate the effects of carbon disulfide (CS(2)) inhalation on the lipid levels of ApoE knockout gene mice and C57BL/6J mice.
METHODSFifty-one male ApoE gene knockout mice were randomly divided into four groups: CS(2)-exposed normal diet group, CS(2)-unexposed normal diet group, CS(2)-exposed high-fat diet group, and CS(2)-unexposed high-fat diet group. Fifty male C57BL/6J mice were divided into four groups in the same way. The exposed groups received 1000 mg/m3 CS(2) by static inhalation (5h/d, 5d/w) for four weeks. The weight of each mouse was determined and recorded once a week. On the 14th day of exposure, six mice in each group were randomly selected to measure serum total cholesterol (TC) levels. On the 28th day of exposure, the serum levels of TC and low-density lipoprotein (LDL) in the remaining mice were measured.
RESULTSThe mean weight gain of exposed groups was less than that of the unexposed groups. On the 14th and 28th days of experiment, the TC levels of the CS2-exposed high-fat diet group were significantly higher than those of the CS(2)-unexposed high-fat diet group among ApoE knockout gene mice (P < 0.01 for both). On the 14th day of experiment, the TC levels of the CS(2)-unexposed high-fat diet group were significantly higher than those of the CS(2)-unexposed normal-diet group among C57BL/6J mice group (P < 0.05). On the 28th day of experiment, the LDL levels of the CS(2)-exposed high-fat diet group were significantly higher than those of the CS(2)-unexposed high-fat diet group among ApoE knockout gene mice (P = 0.003).
CONCLUSIONCS(2) exposure, high-fat diet, and ApoE gene knockout can elevate blood lipids in mice, thus increasing the risk of atherosclerosis.
Administration, Inhalation ; Animals ; Apolipoproteins E ; genetics ; Atherosclerosis ; Body Weight ; Carbon Disulfide ; toxicity ; Diet, High-Fat ; adverse effects ; Gene Knockout Techniques ; Lipid Metabolism ; drug effects ; Lipids ; blood ; Lipoproteins, LDL ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout
6.Thymic stromal lmphopoietin pomotes macrophage-derived foam cell formation.
Da-zhu LI ; Bo-yuan WANG ; Bao-jie YANG ; Shao-lin HE ; Jing LIN ; Jiang-chuan DONG ; Chun WU ; Jun HU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):23-28
The effect of thymic stromal lymphopoietin (TSLP) on macrophage-derived foam cell formation and the underlying mechanism were studied. Macrophages isolated from C57BL/6 mice were co-cultured in vitro with different concentrations of TSLP or TSLPR-antibody in the presence of oxidized low density lipoprotein (ox-LDL). The effects of TSLP on macrophage-derived foam cell formation were observed by using oil red O staining and intracellular lipid determination. The expression levels of foam cell scavenger receptors (CD36 and SRA) as well as ABCA1 and TSLPR were detected by using RT-PCR and Western blotting. As compared with the control group, TSLP treatment significantly promoted lipid accumulation in macrophages, significantly increased protein expression of CD36 and TSLPR in a dose-dependent manner, and significantly reduced the expression of ABCA1 protein in a dose-dependent manner. No significant differences were noted between the TSLPR-antibody group and the control group. TSLP may down-regulate the expression of cholesterol efflux receptor ABCA1 and up-regulate scavenger receptor expression via the TSLPR signaling pathway, thereby promoting macrophage-derived foam cell formation.
ATP Binding Cassette Transporter 1
;
genetics
;
metabolism
;
Animals
;
Antibodies
;
immunology
;
pharmacology
;
Blotting, Western
;
CD36 Antigens
;
genetics
;
metabolism
;
Cells, Cultured
;
Cholesterol
;
metabolism
;
Cholesterol Esters
;
metabolism
;
Cytokines
;
pharmacology
;
Dose-Response Relationship, Drug
;
Foam Cells
;
cytology
;
drug effects
;
metabolism
;
Gene Expression
;
drug effects
;
Immunoglobulins
;
immunology
;
metabolism
;
Lipoproteins, LDL
;
pharmacology
;
Macrophages
;
cytology
;
drug effects
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
Receptors, Cytokine
;
immunology
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Scavenger Receptors, Class A
;
genetics
;
metabolism
7.Effects of alkaloids from coptidis rhizoma on blood lipid metabolism and low-denstity lipoprotein receptor mRNA in golden hamsters.
Hao WU ; Yan-Zhi WANG ; De-Zhen WANG ; Jie PANG ; Xiao-Li YE ; Xue-Gang LI
China Journal of Chinese Materia Medica 2014;39(11):2102-2105
To study the effects of alkaloids from Coptidis Rhizoma on low-density lipoprotein receptor (LDLR) mRNA expression and antihyperlipedemic levels. The LDLR mRNA expression were detected by real time fluorescence quantitative PCR, and the levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL-c) and high-density lipoprotein cholesterol (HDL-c) in serum were measured at the first and last examination. The results show that, after the drug treatment, compared with the model group, each drug group showed a lipid-lowering effect. Especially, coptisine, palmatine, jatrorrhinze were significantly reduced TC, TG, LDL-c (P < 0.05, P < 0.01), and increased HDL-c (P < 0.01). In addition, they also increased mRNA expression of the LDLR in liver and HepG2 cells. The results showed that alkaloids from Coptidis Rhizoma can regulate lipid metabolism disorder, and coptisine have the best lipid-lowering effect.
Alkaloids
;
administration & dosage
;
Animals
;
Cholesterol
;
metabolism
;
Cricetinae
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Hyperlipidemias
;
drug therapy
;
genetics
;
metabolism
;
Hypoglycemic Agents
;
administration & dosage
;
Lipid Metabolism
;
drug effects
;
Lipids
;
blood
;
Lipoproteins, LDL
;
metabolism
;
Mesocricetus
;
Receptors, Lipoprotein
;
genetics
;
metabolism
;
Triglycerides
;
metabolism
8.Effect of Antrodia cinnamomea on gene expression related to aortal endothelial injury in rats with hyperlipidemia.
Jie QI ; Yun TAO ; Jun ZHANG ; Jian FU
China Journal of Chinese Materia Medica 2014;39(9):1670-1674
OBJECTIVETo investigate the effect of Antrodia cinnamomea on gene expression related to aortal endothelial injury of rats with hyperlipidemia.
METHODFifty SD rats were randomly divided into five groups: the normal control group (NG), the model group (MG), the antrodia cinnamomea groups of low, middle and high doses (AC-LG, AC-MG, AC-HG, 250, 500, 1 000 mg x kg(-1)). The rats were fed with high-fat diets to establish the hyperlipidemia model. After the drug administration for 10 weeks, their serum lipid, SOD, MDA and ox-LDL, LOX-1, P38 MAPK and NF-kappaB mRNA and protein expression were respectively determined, and the aortal endothelial injury was observed under electron microscope.
RESULTIn the model group, the contents of TC, TG and LDL-C significant increased (P < 0.01), whereas the content of HDL-C significant decreased (P < 0.01). Compared with the model group, both the AC-M group and the AC-H group showed reduction in endothelial injury and significant decrease in the content of TC, TG and LDL-C (P < 0.05 or P < 0.01). The content of HDL-C increased, but with no significant difference. SOD activity in serum remarkably increased (P < 0.05 or P < 0.01), MDA and ox-LDL levels dramatically decreased (P < 0.05 or P < 0.01).
CONCLUSIONA. cinnamomea can alleviate endothelial lipid injury by inhibiting the expressions of LOX-1, P38MAPK and NF-kappaB in aorta and better protect aortal endothelial cells from oxidative lipid injury.
Animals ; Antrodia ; chemistry ; Aorta ; drug effects ; metabolism ; ultrastructure ; Atherosclerosis ; blood ; genetics ; prevention & control ; Biological Products ; pharmacology ; Cholesterol ; blood ; Cholesterol, HDL ; blood ; Cholesterol, LDL ; blood ; Endothelium, Vascular ; drug effects ; metabolism ; pathology ; Enzyme-Linked Immunosorbent Assay ; Gene Expression ; drug effects ; Hyperlipidemias ; blood ; genetics ; prevention & control ; Lipoproteins, LDL ; blood ; Male ; Malondialdehyde ; blood ; Microscopy, Electron ; NF-kappa B ; blood ; genetics ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; Scavenger Receptors, Class E ; blood ; genetics ; metabolism ; Superoxide Dismutase ; blood ; Triglycerides ; blood ; p38 Mitogen-Activated Protein Kinases ; blood ; genetics ; metabolism
9.Downregulation of p38 MAPK involved in inhibition of LDL-induced proliferation of mesangial cells and matrix by curcumin.
Ju-Mei XIA ; Jun ZHANG ; Wen-Xiang ZHOU ; Xiao-Cheng LIU ; Min HAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(5):666-671
Curcumin, as a main pharmacological component in the traditional Chinese medicine-turmeric, has shown anti-inflammatory, anti-oxidation, anti-tumor and anti-fibrotic effects. This study aimed to investigate the possible underlying signaling pathway which was involved in the inhibition of LDL-induced proliferation of mesangial cells and matrix by curcumin. Rat mesangial cells in vitro were incubated with low-density lipoprotein (LDL) and different concentrations of curcumin (0, 6.25, 12.5, 25.0 μmol/L) or p38 MAPK inhibitor, SB203580 (10 μmol/L). Under LDL incubation, mesangial cells proliferated, the expression of MMP-2 mRNA and protein was decreased, the expression of COX-2 mRNA and protein was increased, reactive oxygen species (ROS) generation was increased and p38 MAPK was activated significantly (P<0.05). When LDL-induced cells were treated with curcumin in the concentration of 12.5 or 25.0 μmol/L, LDL-induced proliferation of mesangial cells was suppressed, the expression of MMP-2 mRNA and protein increased, the expression of COX-2 mRNA and protein downregulated, the production of ROS inhibited and p38 MAPK inactivated (P<0.05). In conclusion, curcumin can inhibit the LDL-induced proliferation of mesangial cells and up-regulate the expression of MMP-2, which may be related with the inhibitory effect of curcumin on COX-2 expression, ROS production and p38 MAPK.
Animals
;
Anti-Inflammatory Agents, Non-Steroidal
;
pharmacology
;
Blotting, Western
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Curcumin
;
pharmacology
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Dose-Response Relationship, Drug
;
Down-Regulation
;
Enzyme Inhibitors
;
pharmacology
;
Extracellular Matrix
;
drug effects
;
metabolism
;
Gene Expression
;
drug effects
;
Imidazoles
;
pharmacology
;
Lipoproteins, LDL
;
pharmacology
;
Matrix Metalloproteinase 2
;
genetics
;
metabolism
;
Mesangial Cells
;
drug effects
;
metabolism
;
Pyridines
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
metabolism
10.Impact of Lysophosphatidylcholine on the Plasminogen Activator System in Cultured Vascular Smooth Muscle Cells.
Byung Koo YOON ; Young Hee KANG ; Won Jong OH ; Kyungwon PARK ; Dong Yun LEE ; Dooseok CHOI ; Duk Kyung KIM ; Youngjoo LEE ; Mee Ra RHYU
Journal of Korean Medical Science 2012;27(7):803-810
The balance between tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor type 1 (PAI-1) regulates fibrinolysis. PAI-1 expression increases in atherosclerotic arteries and vascular smooth muscle cells (VSMCs) are one of major constituents of atheroma. We investigated the impact of lysophosphatidylcholine (lysoPC), an active component of oxidized low-density lipoprotein, on the plasminogen activator system of the rat VSMCs. The lysoPC stimulated the protein and gene expressions of PAI-1 but did not affect the protein expression of t-PA. Fibrin overlay zymography revealed that lysoPC increased the activity of PAI-1 in the conditioned media, while concurrently decreasing that of free t-PA. Vitamin E inhibited the lysoPC-induced PAI-1 expression. Further, lysoPC increased the intracellular reactive oxygen species (ROS) formation. Caffeic acid phenethyl ester, an inhibitor of NF-kappaB, blocked this lysoPC effect. Indeed, lysoPC induced the NF-kappaB-mediated transcriptional activity as measured by luciferase reporter assay. In addition, genistein, an inhibitor of protein-tyrosine kinase (PTK), diminished the lysoPC effect, while 7,12-dimethylbenz[a]anthracene, a stimulator of PTK, stimulated PAI-1 production. In conclusion, lysoPC does not affect t-PA expression but induces PAI-1 expression in the VSMC by mediating NF-kappaB and the genistein-sensitive PTK signaling pathways via oxidative stress. Importantly, lysoPC stimulates the enzyme activity of PAI-1 and suppresses that of t-PA.
Animals
;
Benz(a)Anthracenes/pharmacology
;
Caffeic Acids/pharmacology
;
Cells, Cultured
;
Genistein/pharmacology
;
Lipoproteins, LDL/metabolism
;
Lysophosphatidylcholines/*pharmacology
;
Muscle, Smooth, Vascular/cytology/*drug effects/metabolism
;
NF-kappa B/antagonists & inhibitors/metabolism
;
Oxidative Stress/drug effects
;
Phenylethyl Alcohol/analogs & derivatives/pharmacology
;
Plasminogen Activator Inhibitor 1/agonists/genetics/*metabolism
;
Protein Kinase Inhibitors/pharmacology
;
Protein-Tyrosine Kinases/antagonists & inhibitors/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/metabolism
;
Signal Transduction/drug effects
;
Tissue Plasminogen Activator/*metabolism
;
Transcription, Genetic/drug effects
;
Up-Regulation/drug effects
;
Vitamin E/pharmacology

Result Analysis
Print
Save
E-mail