1.Mechanism of bilobalide promoting neuroprotection of macrophages.
Yang-Yang CHEN ; Wen-Yuan JU ; Guo-Guo CHU ; Xiao-Hui LI ; Ru-Heng WEI ; Qing WANG ; Bao-Guo XIAO ; Cun-Gen MA
China Journal of Chinese Materia Medica 2023;48(15):4201-4207
This study aims to explore the neuroprotective effect of bilobalide(BB) and the mechanisms such as inhibiting inflammatory response in macrophage/microglia, promoting neurotrophic factor secretion, and interfering with the activation and differentiation of peripheral CD4~+ T cells. BB of different concentration(12.5, 25, 50, 100 μg·mL~(-1)) was used to treat the RAW264.7 and BV2 cells for 24 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay and cell counting kit-8(CCK-8) were employed to detect the cytotoxicity of BB and appropriate concentration was selected for further experiment. Lipopolysaccharide(LPS) was applied to elicit inflammation in RAW264.7 and BV2 cells, mouse bone marrow-derived macrophages(BMDMs), and primary microglia, respectively. The effect of BB on cell proliferation and secretion of inflammatory cytokines and neurotrophic factors was detected by enzyme-linked immunosorbent assay(ELISA). Spleen monocytes of C57BL/6 female mice(7-8 weeks old) were isolated, and CD4~+ T cells were separated by magnetic beads under sterile conditions. Th17 cells were induced by CD3/CD28 and the conditioned medium for eliciting the inflammation in BMDMs. The content of IL-17 cytokines in the supernatant was detected by ELISA to determine the effect on the activation and differentiation of CD4~+ T cells. In addition, PC12 cells were incubated with the conditioned medium for eliciting inflammation in BMDMs and primary microglia and the count and morphology of cells were observed. The cytoto-xicity was determined by lactate dehydrogenase(LDH) assay. The result showed that BB with the concentration of 12.5-100 μg·mL~(-1) had no toxicity to RAW264.7 and BV2 cells, and had no significant effect on the activity of cell model with low inflammation. The 50 μg·mL~(-1) BB was selected for further experiment, and the results indicated that BB inhibited LPS-induced secretion of inflammatory cytokines. The experiment on CD4~+ T cells showed that the conditioned medium for LPS-induced inflammation in BMDMs promoted the activation and differentiation of CD4~+ T cells, while the conditioned medium of the experimental group with BB intervention reduced the activation and differentiation of CD4~+ T cells. In addition, BB also enhanced the release of neurotrophic factors from BMDMs and primary microglia. The conditioned medium after BB intervention can significantly reduce the death of PC12 neurons, inhibit neuronal damage, and protect neurons. To sum up, BB plays a neuroprotective role by inhibiting macrophage and microglia-mediated inflammatory response and promoting neurotrophic factors.
Female
;
Rats
;
Mice
;
Animals
;
Bilobalides/pharmacology*
;
Neuroprotection
;
Lipopolysaccharides/toxicity*
;
Culture Media, Conditioned/pharmacology*
;
Mice, Inbred C57BL
;
Macrophages/metabolism*
;
Microglia
;
Cytokines/metabolism*
;
Nerve Growth Factors/pharmacology*
;
Inflammation/metabolism*
2.Rice bran oil supplementation protects swine weanlings against diarrhea and lipopolysaccharide challenge.
Juncheng HUANG ; Wenxia QIN ; Baoyang XU ; Haihui SUN ; Fanghua JING ; Yunzheng XU ; Jianan ZHAO ; Yuwen CHEN ; Libao MA ; Xianghua YAN
Journal of Zhejiang University. Science. B 2023;24(5):430-441
Early weaned piglets suffer from oxidative stress and enteral infection, which usually results in gut microbial dysbiosis, serve diarrhea, and even death. Rice bran oil (RBO), a polyphenol-enriched by-product of rice processing, has been shown to have antioxidant and anti-inflammatory properties both in vivo and in vitro. Here, we ascertained the proper RBO supplementation level, and subsequently determined its effects on lipopolysaccharide (LPS)-induced intestinal dysfunction in weaned piglets. A total of 168 piglets were randomly allocated into four groups of seven replicates (42 piglets each group, (21±1) d of age, body weight (7.60±0.04) kg, and half males and half females) and were given basal diet (Ctrl) or basal diet supplemented with 0.01% (mass fraction) RBO (RBO1), 0.02% RBO (RBO2), or 0.03% RBO (RBO3) for 21 d. Then, seven piglets from the Ctrl and the RBO were treated with LPS (100 μg/kg body weight (BW)) as LPS group and RBO+LPS group, respectively. Meanwhile, seven piglets from the Ctrl were treated with the saline vehicle (Ctrl group). Four hours later, all treated piglets were sacrificed for taking samples of plasma, jejunum tissues, and feces. The results showed that 0.02% was the optimal dose of dietary RBO supplementation based on diarrhea, average daily gain, and average daily feed intake indices in early weaning piglets. Furthermore, RBO protected piglets against LPS-induced jejunal epithelium damage, which was indicated by the increases in villus height, villus height/crypt depth ratio, and Claudin-1 levels, as well as a decreased level of jejunal epithelium apoptosis. RBO also improved the antioxidant ability of LPS-challenged piglets, which was indicated by the elevated concentrations of catalase and superoxide dismutase, and increased total antioxidant capacity, as well as the decreased concentrations of diamine oxidase and malondialdehyde in plasma. Meanwhile, RBO improved the immune function of LPS-challenged weaned piglets, which was indicated by elevated immunoglobulin A (IgA), IgM, β-defensin-1, and lysozyme levels in the plasma. In addition, RBO supplementation improved the LPS challenge-induced dysbiosis of gut microbiota. Particularly, the indices of antioxidant capacity, intestinal damage, and immunity were significantly associated with the RBO-regulated gut microbiota. These findings suggested that 0.02% RBO is a suitable dose to protect against LPS-induced intestinal damage, oxidative stress, and jejunal microbiota dysbiosis in early weaned piglets.
Male
;
Female
;
Swine
;
Animals
;
Lipopolysaccharides/toxicity*
;
Antioxidants/pharmacology*
;
Rice Bran Oil
;
Dysbiosis
;
Dietary Supplements
;
Diarrhea/veterinary*
;
Weaning
;
Body Weight
3.Tanshinone IIA prevents acute lung injury by regulating macrophage polarization.
Jia-Yi ZHAO ; Jin PU ; Jian FAN ; Xin-Yu FENG ; Jian-Wen XU ; Rong ZHANG ; Yan SHANG
Journal of Integrative Medicine 2022;20(3):274-280
OBJECTIVE:
Acute lung injury (ALI) is a serious respiratory dysfunction caused by pathogen or physical invasion. The strong induced inflammation often causes death. Tanshinone IIA (Tan-IIA) is the major constituent of Salvia miltiorrhiza Bunge and has been shown to display anti-inflammatory effects. The aim of the current study was to investigate the effects of Tan-IIA on ALI.
METHODS:
A murine model of lipopolysaccharide (LPS)-induced ALI was used. The lungs and serum samples of mice were extracted at 3 days after treatment. ALI-induced inflammatory damages were confirmed from cytokine detections and histomorphology observations. Effects of Tan-IIA were investigated using in vivo and in vitro ALI models. Tan-IIA mechanisms were investigated by performing Western blot and flow cytometry experiments. A wound-healing assay was performed to confirm the Tan-IIA function.
RESULTS:
The cytokine storm induced by LPS treatment was detected at 3 days after LPS treatment, and alveolar epithelial damage and lymphocyte aggregation were observed. Tan-IIA treatment attenuated the LPS-induced inflammation and reduced the levels of inflammatory cytokines released not only by inhibiting neutrophils, but also by macrophage. Moreover, we found that macrophage activation and polarization after LPS treatment were abrogated after applying the Tan-IIA treatment. An in vitro assay also confirmed that including the Tan-IIA supplement increased the relative amount of the M2 subtype and decreased that of M1. Rebalanced macrophages and Tan-IIA inhibited activations of the nuclear factor-κB and hypoxia-inducible factor pathways. Including Tan-IIA and macrophages also improved alveolar epithelial repair by regulating macrophage polarization.
CONCLUSION
This study found that while an LPS-induced cytokine storm exacerbated ALI, including Tan-IIA could prevent ALI-induced inflammation and improve the alveolar epithelial repair, and do so by regulating macrophage polarization.
Abietanes
;
Acute Lung Injury/drug therapy*
;
Animals
;
Cytokine Release Syndrome
;
Cytokines
;
Inflammation/drug therapy*
;
Lipopolysaccharides/toxicity*
;
Macrophage Activation
;
Macrophages
;
Mice
;
Triacetoneamine-N-Oxyl/pharmacology*
4.Lipopolysaccharide induced intestinal epithelial injury: a novel organoids-based model for sepsis in vitro.
Sisi HUANG ; Sheng ZHANG ; Limin CHEN ; Xiaojun PAN ; Zhenliang WEN ; Yizhu CHEN ; Lidi ZHANG ; Jiao LIU ; Dechang CHEN
Chinese Medical Journal 2022;135(18):2232-2239
BACKGROUND:
Advances in organoid culture technology have provided a greater understanding of disease pathogenesis, which has been rarely studied in sepsis before. We aim to establish a suitable organoids-based intestinal injury model for sepsis.
METHODS:
Stable passaged organoids were constructed and pre-treated with lipopolysaccharide (LPS) to mimic sepsis-induced intestinal injury. The LPS-induced sepsis model was used as a reference. We used quantitative real-time polymerase chain reaction to evaluate the RNA levels of inflammatory factors and antimicrobial peptides. Enzyme-linked immunosorbent assay was used to evaluate the protein levels, hematoxylin and eosin staining was used to evaluate the pathology of the small intestine of mice, and immunohistochemistry and immunofluorescence were used to evaluate the intestinal epithelial barrier function. Perkin Elmer Operetta™ was used to obtain high-resolution images of three-dimensional organoids.
RESULTS:
An LPS concentration >150 μg/mL after 24 h was identified to cause organoid growth restriction. The fluorescence intensity of zonula occludens-1 and occludins at LPS concentrations >100 μg/mL decreased significantly after 24 h. After LPS stimulation for 8 h, the RNA expression levels of interleukin (IL)-1α, tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, IL-6, and regenerating islet-derived protein 3 alpha, beta, and gamma increased. These results resembled those of intestinal epithelial layer alterations in a mouse sepsis model. For IL-10, the RNA expression level increased only when the LPS level >200 μg/mL for 24 h.
CONCLUSIONS
This study provides the primary intestinal in vitro model to study the effects of LPS-induced intestinal injury resembling sepsis. This model provides a platform for immune associated mechanism exploration and effective drug screening.
Mice
;
Animals
;
Lipopolysaccharides/toxicity*
;
Sepsis
;
Intestinal Diseases
;
Tumor Necrosis Factor-alpha
;
Disease Models, Animal
;
Organoids
;
RNA
5.Minocycline Activates the Nucleus of the Solitary Tract-Associated Network to Alleviate Lipopolysaccharide-Induced Neuroinflammation.
Jian-Bo XIU ; Lan-Lan LI ; Qi XU
Chinese Medical Sciences Journal 2022;37(1):1-14
Objective To examine the neuroanatomical substrates underlying the effects of minocycline in alleviating lipopolysaccharide (LPS)-induced neuroinflammation. Methods Forty C57BL/6 male mice were randomly and equally divided into eight groups. Over three conse-cutive days, saline was administered to four groups of mice and minocycline to the other four groups. Immediately after the administration of saline or minocycline on the third day, two groups of mice were additionally injected with saline and the other two groups were injected with LPS. Six or 24 hours after the last injection, mice were sacrificed and the brains were removed. Immunohistochemical staining across the whole brain was performed to detect microglia activation via Iba1 and neuronal activation via c-Fos. Morphology of microglia and the number of c-Fo-positive neurons were analyzed by Image-Pro Premier 3D. One-way ANOVA and Fisher's least-significant differences were employed for statistical analyses. Results Minocycline alleviated LPS-induced neuroinflammation as evidenced by reduced activation of microglia in multiple brain regions, including the shell part of the nucleus accumbens (Acbs), paraventricular nucleus (PVN) of the hypothalamus, central nucleus of the amygdala (CeA), locus coeruleus (LC), and nucleus tractus solitarius (NTS). Minocycline significantly increased the number of c-Fo-positive neurons in NTS and area postrema (AP) after LPS treatment. Furthermore, in NTS-associated brain areas, including LC, lateral parabrachial nucleus (LPB), periaqueductal gray (PAG), dorsal raphe nucleus (DR), amygdala, PVN, and bed nucleus of the stria terminali (BNST), minocycline also significantly increased the number of c-Fo-positive neurons after LPS administration. Conclusion Minocycline alleviates LPS-induced neuroinflammation in multiple brain regions, possibly due to increased activation of neurons in the NTS-associated network.
Animals
;
Female
;
Lipopolysaccharides/toxicity*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Minocycline/pharmacology*
;
Neuroinflammatory Diseases
;
Solitary Nucleus
6.Preventive and therapeutic effect of bioactive component of licorice on antidepressant-induced liver injury.
Wen-Qing MU ; Guang XU ; Jia ZHAO ; Yuan-Yuan CHEN ; Zhao-Fang BAI ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2022;47(22):6146-6154
Since exploding rates of modern mental diseases, application of antidepressants has increased. Worryingly, the antidepressant-induced liver injury has gradually become a serious health burden. Furthermore, since most of the knowledge about antidepressant hepatotoxicity are from pharmacovigilance and clinical case reports and lack of observational studies, the underlying mechanisms are poorly understood and there is a lack of efficient treatment strategies. In this study, antidepressant paroxetine directly triggered inflammasome activation evidenced by caspase-1 activation and downstream effector cytokines interleukin(IL)-1β secretion. The pretreatment of echinatin, a bioactive component of licorice, completely blocked the activation. This study also found that echinatin effectively inhibited the production of inflammasome-independent tumor necrosis factor α(TNF)-α induced by paroxetine. Mechanistically, the accumulation of mitochondrial reactive oxygen species(mtROS) was a key upstream event of paroxetine-induced inflammasome activation, which was dramatically inhibited by echinatin. In the lipopolysaccharide(LPS)-mediated idiosyncratic drug-induced liver injury(IDILI) model, the combination of LPS and paroxetine triggered aberrant activation of the inflammasome to induce idiosyncratic hepatotoxicity, which was reversed by echinatin pretreatment. Notably, this study also found that various bioactive components of licorice had an inhibitory effect on paroxetine-triggered inflammasome activation. Meanwhile, multiple antidepressant-induced aberrant activation of the inflammasome could be completely blocked by echinatin pretreatment. In conclusion, this study provides a novel insight for mechanism of antidepressant-induced liver injury and a new strategy for the treatment of antidepressant-induced hepatotoxicity.
Animals
;
Humans
;
Mice
;
Antidepressive Agents/adverse effects*
;
Chemical and Drug Induced Liver Injury, Chronic/prevention & control*
;
Glycyrrhiza/chemistry*
;
Inflammasomes/drug effects*
;
Interleukin-1beta/metabolism*
;
Lipopolysaccharides/toxicity*
;
Mice, Inbred C57BL
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Paroxetine/adverse effects*
;
Tumor Necrosis Factor-alpha
;
Chalcones/therapeutic use*
7.Study on anti-inflammatory activity and mechanism of indolealkylamines in toad skin on LPS-activated neutrophils.
Yu ZHANG ; Yao-Hua DING ; Xiao-Lu WEI ; Yan-Yan ZHOU ; Nan SI ; Jian YANG ; Hong-Jie WANG ; Hai-Yu ZHAO ; Bao-Lin BIAN
China Journal of Chinese Materia Medica 2021;46(18):4774-4781
Indolealkylamines(IAAs) are the main hydrophilic substances in toad skin, mainly including free N-methyl-5-hydroxytryptamine, bufotenine, bufotenidine, dehydrobufotenine, and binding bufothionine. In this study, the LPS-activated neutrophils were used to investigate the structure-activity relationship and anti-inflammatory mechanism of the above-mentioned five monomers from the toad skin in vitro. The neutrophils were divided into the control group, model group(1 μg·mL~(-1) LPS), positive drug group(100 μg·mL~(-1) indometacin), as well as the low-(50 μg·mL~(-1)), medium-(100 μg·mL~(-1)) and high-dose(200 μg·mL~(-1)) free N-methyl-5-hydroxytryptamine, bufotenine, bufotenidine, dehydrobufotenine, and binding bufothionine groups. The levels of IL-6, TNF-α and IL-1β in the neutrophil supernatant of each group was measured by enzyme-linked immunosorbent assay(ELISA) after LPS stimulation, followed by the detection of apoptosis in each group after Annexin V/PI staining. The protein expression levels of caspase-3, Bax, Bcl-2, beclin1, LC3-I, and LC3-Ⅱ were assayed by Western blot. The results showed that IAAs reduced the excessive secretion of inflammatory cytokines caused by LPS compared with the model group. Besides, the activity of each free IAAs(N-methyl-5-hydroxytryptamine, bufotenine, bufotenidine and dehydrobufotenine), especially bufotenine, was stronger than that of the binding bufothionine. As revealed by Annexin V/PI staining, LPS delayed the early apoptosis of neutrophils compared with the control group, while bufotenine promoted the apoptosis of neutrophils in a dose-dependent manner, which might be related to the elevated expression of apoptosis-related protein Bax/Bcl-2. In addition, LPS activated the autophagy pathways in neutrophils. This study confirmed the efficacy of IAAs in reducing the secretion of inflammatory cytokines in neutrophils induced by LPS for the first time. For instance, bufotenine exerts the anti-inflammatory effect possibly by inducing the apoptosis of neutrophils.
Animals
;
Anti-Inflammatory Agents/pharmacology*
;
Apoptosis
;
Bufonidae
;
Lipopolysaccharides/toxicity*
;
Neutrophils
;
Skin
8.Anti-inflammatory effect and mechanism of ethanol extract from Saposhnikoviae Radix in LPS-induced inflammation mouse model.
Qi LIU ; Ming GAO ; Hong-Jun LYU ; Zhi-Li RAO ; Nan ZENG
China Journal of Chinese Materia Medica 2021;46(18):4800-4807
This paper aimed to explore the anti-inflammatory effect of ethanol extract from Saposhnikoviae Radix in a lipopolysaccharide(LPS)-induced inflammation mouse model and its regulation of TLR4/NF-κB signaling pathway. The ethanol extract from Saposhnikoviae Radix was separated and purified on the macroporous adsorption resin and its main chemical components were identified by UPLC-QE/MS. The identification results showed that the top ten components of ethanol extract from Saposhnikoviae Radix were mainly chromones and coumarins. A mouse model of inflammation induced by intraperitoneal injection of LPS was used to investigate the anti-inflammatory effects of ethanol extract from Saposhnikoviae Radix after intragastric administration for seven successive days. Mice in all groups except for the control group were treated with intraperitoneal injection of LPS(0.015 g·kg~(-1)) one hour after the last administration, and twelve hours later, the blood was sampled and separated and the broncoalveolar lavage fluid(BALF) was collected. The levels of nitric oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1β(IL-1β) in mouse serum and BALF were detected by ELISA. The harvested lung tissue was stained with hematoxylin-eosin(HE) for observing the pathological changes, followed by the detection of protein expression levels of related molecules in TLR4/NF-κB signaling pathway by Western blotting. The results showed that the ethanol extract from Saposhnikoviae Radix significantly ameliorated the pathological conditions in lung tissue of model mice, reversed the increase in NO, TNF-α, IL-6, and IL-1β levels of mouse serum and BALF, down-regulated the protein expression levels of Toll-like receptor 4(TLR4), myeloid differentiation factor(MyD88), and phosphorylated nuclear transcription factor κB-p65/nuclear transcription factor κB-p65(P-NF-κB p65/NF-κB p65), and up-regulated the NF-κB inhibitory protein α(IκBα). The ethanol extract from Saposhnikoviae Radix exhibited a good anti-inflammatory effect in the LPS-induced acute inflammation muse model, which might be related to the inhibition of the activation of TLR4/NF-κB inflammatory signaling pathway. Chromones and coumarins have been proved to be the active components for its anti-inflammatory effects.
Animals
;
Anti-Inflammatory Agents
;
Ethanol
;
Inflammation/drug therapy*
;
Lipopolysaccharides/toxicity*
;
Mice
;
NF-kappa B/genetics*
;
Plant Extracts
9.Dexmedetomidine alleviates LPS/D-Gal-induced acute liver injury via up-regulation of LC3-II expression in mice.
Xiao-Jiao HE ; Bin XIE ; Song HUANG ; Ming-Hua LIU
Acta Physiologica Sinica 2021;73(6):901-908
The aim of the present study was to investigate the effects of dexmedetomidine (DEX) on acute liver injury induced by lipopolysaccharide (LPS)/D-galactosamine (D-Gal) and the underlying mechanism. Male BALB/c mice were intraperitoneally injected with LPS/D-Gal to induce acute liver injury model, and pretreated with DEX or in combination with the autophagy inhibitor, 3-methyladenine (3-MA) 30 min before injection. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, as well as myeloperoxidase (MPO) activity in liver tissue were determined with the corresponding kits. Serum tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) levels were determined by ELISA. The protein expression levels of LC3-II and P62 in liver tissue were determined by Western blot. Liver histopathological changes were detected by HE staining. The results showed that, compared with control group, LPS/D-Gal enhanced ALT and AST activity, increased TNF-α and IL-6 levels, as well as MPO activity, up-regulated LC3-II and P62 protein expression levels, and significantly induced pathological damage in liver tissue. DEX reversed the above changes in the LPS/D-Gal group, whereas these protective effects of DEX were blocked by 3-MA. The above results suggest that DEX alleviates LPS/D-Gal-induced acute liver injury, which may be associated with the up-regulation of LC3-II protein expression and the activation of autophagy.
Alanine Transaminase
;
Animals
;
Chemical and Drug Induced Liver Injury/drug therapy*
;
Dexmedetomidine/pharmacology*
;
Galactosamine/toxicity*
;
Interleukin-6/blood*
;
Lipopolysaccharides/toxicity*
;
Liver
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Microtubule-Associated Proteins/metabolism*
;
Tumor Necrosis Factor-alpha/blood*
;
Up-Regulation
10.Dlg1 Knockout Inhibits Microglial Activation and Alleviates Lipopolysaccharide-Induced Depression-Like Behavior in Mice.
Zhixin PENG ; Xiaoheng LI ; Jun LI ; Yuan DONG ; Yuhao GAO ; Yajin LIAO ; Meichen YAN ; Zengqiang YUAN ; Jinbo CHENG
Neuroscience Bulletin 2021;37(12):1671-1682
Microglia-mediated neuroinflammation is widely perceived as a contributor to numerous neurological diseases and mental disorders including depression. Discs large homolog 1 (Dlg1), an adaptor protein, regulates cell polarization and the function of K
Animals
;
Depression/chemically induced*
;
Inflammation
;
Lipopolysaccharides/toxicity*
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Microglia
;
NF-kappa B
;
Neuroinflammatory Diseases

Result Analysis
Print
Save
E-mail