1.Anti-oxidant and Anti-inflammatory Effects of Ethanol Extract from Polygala sibirica L. var megalopha Fr. on Lipopolysaccharide-Stimulated RAW264.7 Cells.
Cheng-Liu YANG ; Shi-Bo WANG ; Wen-Ping HE ; Jin-Juan LIU
Chinese journal of integrative medicine 2023;29(10):905-913
OBJECTIVE:
To investigate the anti-oxidant and anti-inflammatory effects of ethanol extract of Polygala sibirica L. var megalopha Fr. (EEP) on RAW264.7 mouse macrophages.
METHODS:
RAW264.7 cells were pretreated with 0-200 µg/mL EEP or vehicle for 2 h prior to exposure to 1 µg/mL lipopolysaccharide (LPS) for 24 h. Nitric oxide (NO) and prostaglandin (PGE2) production were determined by Griess reagent and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), interleukin-1beta (IL-1β), and IL-6 were determined using reverse transcription polymerase chain reaction (RT-PCR). Western blot assay was used to determine the protein expressions of iNOS, COX-2, phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), inhibitory subunit of nuclear factor Kappa B alpha (Iκ B-α) and p38. Immunofluorescence was used to observe the nuclear expression of nuclear factor-κ B p65 (NF-κ B p65). Additionally, the anti-oxidant potential of EEP was evaluated by reactive oxygen species (ROS) production and the activities of catalase (CAT) and superoxide dismutase (SOD). The 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), superoxide anion (O2-) radical and nitrite scavenging activity were also measured.
RESULTS:
The total polyphenol and flavonoid contents of EEP were 23.50±2.16 mg gallic acid equivalent/100 g and 43.78±3.81 mg rutin equivalent/100 g. With EEP treatment (100 and 150 µg/mL), there was a notable decrease in NO and PGE2 production induced by LPS in RAW264.7 cells by downregulation of iNOS and COX-2 mRNA and protein expressions (P<0.01 or P<0.05). Furthermore, with EEP treatment (150 µg/mL), there was a decrease in the mRNA expression levels of TNF-α, IL-1β and IL-6, as well as in the phosphorylation of ERK, JNK and p38 mitogen-activated protein kinase (MAPK, P<0.01 or P<0.05), by blocking the nuclear translocation of NF-κ B p65 in LPS-stimulated cells. In addition, EEP (100 and 150 µg/mL) led to an increase in the anti-oxidant enzymes activity of SOD and CAT, with a concomitant decrease in ROS production (P<0.01 or P<0.05). EEP also indicated the DPPH, OH, O2- radical and nitrite scavenging activity.
CONCLUSION
EEP inhibited inflammatory responses in activated macrophages through blocking MAPK/NF-κ B pathway and protected against oxidative stress.
Animals
;
Mice
;
Antioxidants/pharmacology*
;
Lipopolysaccharides/pharmacology*
;
Polygala
;
Transcription Factor RelA/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ethanol/chemistry*
;
Interleukin-6/metabolism*
;
Anti-Inflammatory Agents/chemistry*
;
Reactive Oxygen Species/metabolism*
;
Cyclooxygenase 2/metabolism*
;
Nitrites/metabolism*
;
NF-kappa B/metabolism*
;
Nitric Oxide/metabolism*
;
Superoxide Dismutase/metabolism*
;
RNA, Messenger
;
Nitric Oxide Synthase Type II/metabolism*
2.Anti-osteoarthritis components and mechanism of Fufang Duzhong Jiangu Granules.
Zi-Jun CHEN ; Xiao-Qian HUO ; Yue REN ; Zhan SHU ; Yan-Ling ZHANG
China Journal of Chinese Materia Medica 2022;47(15):4156-4163
Osteoarthritis is a common disease characterized by degenerative lesions of articular cartilage in the elderly.Fufang Duzhong Jiangu Granulues(FDJG), a classical prescription for the treatment of osteoarthritis, has the effects of nourishing liver and kidney, nourishing blood and sinew, and dredging collaterals and relieving pain.In this study, molecular simulation technology was combined with molecular biology methods to explore and verify the potential pharmacodynamic substances and molecular mechanism of FDJG in the treatment of osteoarthritis.Arachidonic acid(AA) metabolic pathway is a typical anti-inflammatory pathway, and secretory phospholipase A2 group ⅡA(sPLA2-ⅡA), 5-lipoxygenase(5-LOX), cyclooxygenase-2(COX-2), and leukotriene A4 hydrolase(LTA4 H) are the key targets of the pathway.Therefore, in this study, based on the pharmacophores and molecular docking models of the four key targets in AA pathway, a total of 1 522 chemical components in 12 medicinals of FDJG were virtually screened, followed by weighted analysis of the screening results in combination with the proportions of the medicinals in the prescription.The results showed that mainly 73 components in the preparation could act on the above four targets, suggesting they might be the potential anti-osteoarthritis components of FDJG.Considering the predicted effectiveness, availability, and compatibility of the medicinals, coniferyl ferulate, olivil, and baicalin were selected for further verification.Specifically, lipopolysaccharide(LPS)-induced RAW264.7 inflammatory cell model was used to verify the anti-inflammatory activity of the three components.The results showed that the three can effectively inhibit the release of NO, supporting the above selection.In addition, targets 5-LOX, COX-2, and LTA4 H had high activity, which suggested that they may be the key anti-osteoarthritis targets of FDJG.The comprehensive activity values of Eucommiae Cortex, Achyranthis Bidentatae Radix, Ginseng Radix et Rhizoma, Lycii Fructus, and Astragali Radix were much higher than that of other medicinals in the prescription, indicating that they may be the main effective medicinals in FDJG acting on the AA pathway.In this study, the potential anti-osteoarthritis components of FDJG were obtained.Moreover, it was clarified that the anti-osteoarthritis mechanism of FDJG was to act on LOX and COX pathway in AA metabolic pathway, which provided a reference for the study of pharmacodynamic substances and molecular mechanism of FDJG.
Aged
;
Anti-Inflammatory Agents/therapeutic use*
;
Cyclooxygenase 2/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Leukotriene A4/analysis*
;
Lipopolysaccharides
;
Molecular Docking Simulation
;
Osteoarthritis/drug therapy*
;
Rhizome/chemistry*
3.Therapeutic effects of alkaloids in Tibetan medicine Bangna (Aconiti Penduli et Aconiti Flavi Radix) on osteoarthritis rats and mechanisms.
Qi WANG ; Jing PENG ; Yang LIU ; Yang TIAN ; Jie LI ; Yao-Yao REN ; Jian GU ; Rui TAN
China Journal of Chinese Materia Medica 2022;47(17):4715-4722
This study aims to investigate the therapeutic effects of alkaloids in Tibetan medicine Bangna(Aconiti Penduli et Aconiti Flavi Radix) on osteoarthritis(OA) rats in vitro and in vivo and the underlying mechanisms. Chondrocytes were isolated from 2-3 week-old male SD rats and lipopolysaccharide(LPS) was used to induce OA in chondrocytes in vitro. Methyl thiazolyl tetrazolium(MTT) assay was used to investigate the toxicity of seven alkaloids(12-epi-napelline, songorine, benzoylaconine, aconitine, 3-acetylaconitine, mesaconitine, and benzoylmesaconine) to chondrocytes. Chondrocytes were classified into the control group, model group(induced by LPS 5 μg·mL~(-1) for 12 h), and administration groups(induced by LPS 5 μg·mL~(-1) for 12 h and incubated for 24 h). The protein expression of inflammatory factors cyclooxygenase-2(COX-2), inducible nitric oxide synthetase(iNOS), tumor necrosis factor-α(TNF-α), and interleukin-1β(IL-1β) in each group were detected by Western blot, and the protein expression of matrix metalloprotease-13(MMP-13), aggrecan, collagen Ⅱ, fibroblast growth factor 2(FGF2) by immunofluorescence staining. For the in vivo experiment, sodium iodoacetate was used to induce OA in rats, and the expression of MMP-13, TNF-α, and FGF2 in cartilage tissues of rats in each group was detected by immunohistochemistry. The results showed that the viability of chondrocytes could reach more than 90% under the treatment of the seven alkaloids in a certain dose range. Aconitine, 12-epi-napelline, songorine, 3-acetylaconitine, and mesaconitine could decrease the protein expression of inflammatory factors COX-2, iNOS, TNF-α and IL-1β compared with the model group. Moreover, 12-epi-napelline, aconitine, and mesaconitine could down-regulate the expression of MMP-13 and up-regulate the expression of aggrecan and collagen Ⅱ. In addition, compared with the model group and other Bangna alkaloids, 12-epi-napelline significantly up-regulated the expression of FGF2. Therefore, 12-epi-napelline was selected for the animal experiment in vivo. Immunohistochemistry results showed that 12-epi-napelline could significantly reduce the expression of MMP-13 and TNF-α in cartilage tissues, and up-regulate the expression of FGF2 compared with the model group. In conclusion, among the seven Bangna alkaloids, 12-epi-napelline can promote the repair of OA in rats by down-regulating the expression of MMP-13 and TNF-α and up-regulating the expression of FGF2.
Aconitine/therapeutic use*
;
Aconitum/chemistry*
;
Aggrecans/metabolism*
;
Alkaloids/therapeutic use*
;
Animals
;
Cells, Cultured
;
Cyclooxygenase 2/metabolism*
;
Fibroblast Growth Factor 2/therapeutic use*
;
Interleukin-1beta/metabolism*
;
Iodoacetic Acid/therapeutic use*
;
Lipopolysaccharides
;
Male
;
Matrix Metalloproteinase 13/metabolism*
;
Medicine, Tibetan Traditional
;
NF-kappa B/metabolism*
;
Osteoarthritis/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
4.Preventive and therapeutic effect of bioactive component of licorice on antidepressant-induced liver injury.
Wen-Qing MU ; Guang XU ; Jia ZHAO ; Yuan-Yuan CHEN ; Zhao-Fang BAI ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2022;47(22):6146-6154
Since exploding rates of modern mental diseases, application of antidepressants has increased. Worryingly, the antidepressant-induced liver injury has gradually become a serious health burden. Furthermore, since most of the knowledge about antidepressant hepatotoxicity are from pharmacovigilance and clinical case reports and lack of observational studies, the underlying mechanisms are poorly understood and there is a lack of efficient treatment strategies. In this study, antidepressant paroxetine directly triggered inflammasome activation evidenced by caspase-1 activation and downstream effector cytokines interleukin(IL)-1β secretion. The pretreatment of echinatin, a bioactive component of licorice, completely blocked the activation. This study also found that echinatin effectively inhibited the production of inflammasome-independent tumor necrosis factor α(TNF)-α induced by paroxetine. Mechanistically, the accumulation of mitochondrial reactive oxygen species(mtROS) was a key upstream event of paroxetine-induced inflammasome activation, which was dramatically inhibited by echinatin. In the lipopolysaccharide(LPS)-mediated idiosyncratic drug-induced liver injury(IDILI) model, the combination of LPS and paroxetine triggered aberrant activation of the inflammasome to induce idiosyncratic hepatotoxicity, which was reversed by echinatin pretreatment. Notably, this study also found that various bioactive components of licorice had an inhibitory effect on paroxetine-triggered inflammasome activation. Meanwhile, multiple antidepressant-induced aberrant activation of the inflammasome could be completely blocked by echinatin pretreatment. In conclusion, this study provides a novel insight for mechanism of antidepressant-induced liver injury and a new strategy for the treatment of antidepressant-induced hepatotoxicity.
Animals
;
Humans
;
Mice
;
Antidepressive Agents/adverse effects*
;
Chemical and Drug Induced Liver Injury, Chronic/prevention & control*
;
Glycyrrhiza/chemistry*
;
Inflammasomes/drug effects*
;
Interleukin-1beta/metabolism*
;
Lipopolysaccharides/toxicity*
;
Mice, Inbred C57BL
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Paroxetine/adverse effects*
;
Tumor Necrosis Factor-alpha
;
Chalcones/therapeutic use*
5.Proteomics analysis of Astragalus polysaccharide on TLR4-activated lung cancer cell-derived exosomes.
Kang-Die HU ; Kai-Ge YANG ; Cheddah SOUMIA ; Ming-Yuan WU ; Chao YAN ; Xin-Yan LI ; Yan WANG
China Journal of Chinese Materia Medica 2022;47(21):5908-5915
Astragalus polysaccharide(APS), one of the main active components of Astragali Radix, plays an anti-tumor effect by regulating the inflammatory microenvironment of tumors. Exosomes are small extracellular vesicles with a diameter ranging from 50 to 200 nm and carry several biological components from parental cells such as nucleic acids and proteins. When combined with recipient cells, they play an important role in intercellular communication and immune response. In this study, exosomes released from H460 cells at the inflammatory state or with APS addition activated by Toll-like receptor 4(TLR4) were extracted by ultracentrifugation and characterized by Western blot, transmission electron microscopy, and nanoparticle tracking analysis. The exosomal proteins derived from H460 cells in the three groups were further analyzed by label-free proteomics, and 897, 800, and 911 proteins were identified in the three groups(Con, LPS, and APS groups), 88% of which belonged to the ExoCarta exosome protein database. Difference statistical analysis showed that the expression of 111 proteins was changed in the LPS group and the APS group(P<0.05). The biological information analysis of the differential proteins was carried out. The molecular functions, biological processes, and signaling pathways related to the differential proteins mainly involved viral processes, protein binding, and bacterial invasion of proteasome and epithelial cells. Key differential proteins mainly included plasminogen activator inhibitor-1, laminin α5, laminin α1, and CD44, indicating that tumor cells underwent systemic changes in different states and were reflected in exosomes in the inflammatory microenvironment. The analysis results also suggested that APS might affect the inflammatory microenvironment through the TLR4/MyD88/NF-κB signaling pathway or the regulation of the extracellular matrix. This study is conducive to a better understanding of the mechanism of tumor development in the inflammatory state and the exploration of the anti-inflammatory effect of APS at the exosome level.
Humans
;
Exosomes/metabolism*
;
Proteomics
;
Toll-Like Receptor 4/metabolism*
;
Lipopolysaccharides
;
Astragalus Plant/chemistry*
;
Lung Neoplasms/metabolism*
;
Polysaccharides/metabolism*
;
Tumor Microenvironment
6.Seabuckthorn Berries Extract Attenuates Pulmonary Vascular Hyperpermeability in Lipopolysaccharide-Induced Acute Lung Injury in Mice.
Lei-Lei DU ; Ying LIU ; Li WAN ; Chu CHEN ; Gang FAN
Chinese journal of integrative medicine 2022;28(12):1081-1087
OBJECTIVE:
To investigate the effect of seabuckthorn berries extract (SBE) on pulmonary vascular hyperpermeability in the mice model of acute lung injury (ALI) induced by lipopolysaccharide (LPS).
METHODS:
Sixty Kunming mice were allocated into 6 groups by a random number table, including control, LPS, dexamethasone (Dex, 1 mg/kg), and 120, 240 and 480 mg/kg SBE groups, 10 mice in each group. Except the control group, mice were pre-treated with Dex and SBE, respectively, for 7 days before LPS was intraperitoneally injected to induce ALI. Pulmonary vascular hyperpermeability was evaluated by histopathologic observation and transvascular leakage determination. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) levels in serum were measured using enzyme-linked immunosorbent assay. The expression of nuclear factor-kappa B (NF-κB) p65 in lung cells was determined by immunofluorescence analysis. The contents of cytoplasmic inhibitor of nuclear factor-κB kinase (IKK) and nuclear p65, as well as downstream proteins of E-selectin (CD62E) and intercellular adhesion molecule-1 (ICAM-1), were determined using Western blot analysis.
RESULTS:
Histopathological observation confirmed SBE treatment alleviated morphological lesion induced by LPS. Compared with the LPS group, 480 mg/kg SBE significantly decreased the water content of lung, Evans blue accumulation in lung tissue, and protein concentration and neutrophils count in bronchoalveolar lavage fluid (P<0.01); moreover, 480 mg/kg SBE significantly suppressed release of TNF-α and IL-6, and down-regulated expressions of IKK, nuclear p65, ICAM-1 and CD62E (P<0.01).
CONCLUSION
SBE maintained alveolar-capillary barrier integrity under endotoxin challenge in mice by suppressing the key factors in the pathogenesis of ALI.
Animals
;
Mice
;
Acute Lung Injury/drug therapy*
;
Fruit/chemistry*
;
Hippophae/chemistry*
;
Intercellular Adhesion Molecule-1/metabolism*
;
Interleukin-6/metabolism*
;
Lipopolysaccharides
;
Lung/pathology*
;
NF-kappa B/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Plant Extracts/therapeutic use*
7.Anti-inflammatory mechanism of Crepis crocea based on NF-κB signaling pathway and ~1H-NMR metabonomics.
Yu-Lu MIAO ; Pan HE ; Wen-Xia ZHANG ; Wen-Zhi ZHANG ; Min FENG ; Yan NI
China Journal of Chinese Materia Medica 2020;45(4):946-954
Based on ~1H-NMR metabonomics technique and Western blot assay, the anti-inflammatory mechanism of Crepis crocea was discussed. In this study, male SD rats were treated with water extract(2.5 g·kg~(-1)) and dexamethasone acetate(6.25×10~(-4) g·kg~(-1)) for one week, and the inflammation model was induced by lipopolysaccharide(LPS). Then the counts of inflammatory cells white blood ceel(WBC), eosinophil(EO), lymphocyte(LY), basophils(BA) and neutrophils(NE) in whole blood of rats were observed. The levels of serum inflammatory factors tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), IL-6 and the expression of nuclear factor-κB(NF-κB) signaling pathway p65 and p-IκBα proteins in lung tissues were detected, and the change rules of serum endogenous metabolites were analyzed by ~1H-NMR metabonomics technique. The levels of TNF-α, IL-1β, IL-6 and NF-κB signaling pathway p65 and p-IκBα proteins were combined with ~1H-NMR metabonomics to study the anti-inflammatory mechanism of C. crocea. The results showed that the water extract of C. crocea significantly decreased the number of WBC, NE, EO, increased the number of BA and LY, decreased the levels of TNF-α, IL-1β, IL-6 and the expression of p65 and p-IκBα protein in NF-κB signaling pathway, and effectively alleviated the inflammatory symptoms. In the correlation analysis of differential metabolites regulated of C. crocea, four significant metabolites were obtained, including glycine, creatine, methionine and succinic acid. The anti-inflammatory mechanism of C. crocea may be related to the decrease of TNF-α, IL-1β, IL-6 levels and the protein expression of NF-κB signaling pathway, as well as the regulation of glycine, creatine, methionine and succinic acid metabolism.
Animals
;
Anti-Inflammatory Agents/pharmacology*
;
Crepis/chemistry*
;
Cytokines/blood*
;
Inflammation/drug therapy*
;
Lipopolysaccharides
;
Male
;
Metabolomics
;
NF-kappa B/metabolism*
;
Proton Magnetic Resonance Spectroscopy
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
8.Extract of Fructus Schisandrae chinensis Inhibits Neuroinflammation Mediator Production from Microglia via NF-κ B and MAPK Pathways.
Fang-Jiao SONG ; Ke-Wu ZENG ; Jin-Feng CHEN ; Yuan LI ; Xiao-Min SONG ; Peng-Fei TU ; Xue-Mei WANG
Chinese journal of integrative medicine 2019;25(2):131-138
OBJECTIVE:
To investigate the anti-neuroinflammation effect of extract of Fructus Schisandrae chinensis (EFSC) on lipopolysaccharide (LPS)-induced BV-2 cells and the possible involved mechanisms.
METHODS:
Primary cortical neurons were isolated from embryonic (E17-18) cortices of Institute of Cancer Research (ICR) mouse fetuses. Primary microglia and astroglia were isolated from the frontal cortices of newborn ICR mouse. Different cells were cultured in specific culture medium. Cells were divided into 5 groups: control group, LPS group (treated with 1 μg/mL LPS only) and EFSC groups (treated with 1 μg/mL LPS and 100, 200 or 400 mg/mL EFSC, respectively). The effect of EFSC on cells viability was tested by methylthiazolyldiphenyltetrazolium bromide (MTT) colorimetric assay. EFSC-mediated inhibition of LPS-induced production of pro-inflammatory mediators, such as nitrite oxide (NO) and interleukin-6 (IL-6) were quantified and neuron-protection effect against microglia-mediated inflammation injury was tested by hoechst 33258 apoptosis assay and crystal violet staining assay. The expression of pro-inflammatory marker proteins was evaluated by Western blot analysis or immunofluorescence.
RESULTS:
EFSC (200 and 400 mg/mL) reduced NO, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression in LPS-induced BV-2 cells (P<0.01 or P<0.05). EFSC (200 and 400 mg/mL) reduced the expression of NO in LPS-induced primary microglia and astroglia (P<0.01). In addition, EFSC alleviated cell apoptosis and inflammation injury in neurons exposed to microglia-conditioned medium (P<0.01). The mechanistic studies indicated EFSC could suppress nuclear factor (NF)-?B phosphorylation and its nuclear translocation (P<0.01). The anti-inflammatory effect of EFSC occurred through suppressed activation of mitogen-activated protein kinase (MAPK) pathway (P<0.01 or P<0.05).
CONCLUSION
EFSC acted as an anti-inflammatory agent in LPS-induced glia cells. These effects might be realized through blocking of NF-κB activity and inhibition of MAPK signaling pathways.
Animals
;
Astrocytes
;
drug effects
;
metabolism
;
pathology
;
Cell Line
;
Cell Nucleus
;
drug effects
;
metabolism
;
Chromatography, High Pressure Liquid
;
Down-Regulation
;
drug effects
;
Inflammation
;
pathology
;
Inflammation Mediators
;
metabolism
;
Lipopolysaccharides
;
MAP Kinase Signaling System
;
drug effects
;
Mice, Inbred ICR
;
Microglia
;
drug effects
;
metabolism
;
pathology
;
NF-kappa B
;
metabolism
;
Nervous System
;
pathology
;
Neurons
;
drug effects
;
metabolism
;
pathology
;
Neuroprotective Agents
;
pharmacology
;
Plant Extracts
;
pharmacology
;
Schisandra
;
chemistry
;
Spectrometry, Mass, Electrospray Ionization
9.Cardamine komarovii flower extract reduces lipopolysaccharide-induced acute lung injury by inhibiting MyD88/TRIF signaling pathways.
Qi CHEN ; Ke-Xin ZHANG ; Tai-Yuan LI ; Xuan-Mei PIAO ; Mei-Lan LIAN ; Ren-Bo AN ; Jun JIANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):461-468
In the present study, we investigated anti-inflammatory effect of Cardamine komarovii flower (CKF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We determined the effect of CKF methanolic extracts on LPS-induced pro-inflammatory mediators NO and prostaglandin E2 (PGE2), production of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6), and related protein expression levels of MyD88/TRIF signaling pathways in peritoneal macrophages (PMs). Nuclear translocation of NF-κB-p65 was analyzed by immunofluorescence. For the in vivo experiments, an ALI model was established to detect the number of inflammatory cells and inflammatory factors (IL-1β, TNF-α, and IL-6) in bronchoalveolar lavage fluid (BALF) of mice. The pathological damage in lung tissues was evaluated through H&E staining. Our results showed that CKF can decrease the production of inflammatory mediators, such as NO and PGE2, by inhibiting their synthesis-related enzymes iNOS and COX-2 in LPS-induced PMs. In addition, CKF can downregulate the mRNA levels of IL-1β, TNF-α, and IL-6 to inhibit the production of inflammatory factors. Mechanism studies indicated that CKF possesses a fine anti-inflammatory effect by regulating MyD88/TRIF dependent signaling pathways. Immunocytochemistry staining showed that the CKF extract attenuates the LPS-induced translocation of NF-kB p65 subunit in the nucleus from the cytoplasm. In vivo experiments revealed that the number of inflammatory cells and IL-1β in BALF of mice decrease after CKF treatment. Histopathological observation of lung tissues showed that CKF can remarkably improve alveolar clearance and infiltration of interstitial and alveolar cells after LPS stimulation. In conclusion, our results suggest that CKF inhibits LPS-induced inflammatory response by inhibiting the MyD88/TRIF signaling pathways, thereby protecting mice from LPS-induced ALI.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
genetics
;
metabolism
;
Adaptor Proteins, Vesicular Transport
;
genetics
;
metabolism
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
Cardamine
;
chemistry
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Female
;
Flowers
;
chemistry
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Male
;
Mice
;
Myeloid Differentiation Factor 88
;
genetics
;
metabolism
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Plant Extracts
;
administration & dosage
;
chemistry
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
10.Rapid discovery and identification of the anti-inflammatory constituents in Zhi-Shi-Zhi-Zi-Chi-Tang.
Hai-Qiang WANG ; Yun-Xiang ZHU ; Yi-Ning LIU ; Ruo-Liu WANG ; Shu-Fang WANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):308-320
The anti-inflammatory active ingredients of Zhi-Shi-Zhi-Zi-Chi-Tang (ZSZZCT), a traditional Chinese medicine formula, were predicted and identified using an approach based on activity index, LC-MS, semi-preparative LC and NMR. Firstly, the whole extract of ZSZZCT was analyzed using liquid chromatography-quadrupole time of flight-mass spectrometry (LC-Q-TOF-MS) and liquid chromatography - ion trap mass spectrometry (LC-IT-MS), 79 constituents were detected and 39 constituents were identified unambiguously or tentatively. Subsequently, the whole extract of the formula was separated into multiple components and the activity index method was used to calculate index values of the 79 constituents by integrating the chemical and pharmacological information of multiple components. Four polymethoxyl flavones were predicted as the major active constituents according to the activity index values. Furthermore, three polymethoxyl flavones were prepared using the strategy with semi-preparative LC guided by LC-MS, and their anti-inflammatory activities were validated. The results show that three polymethoxyl flavones with higher positive index values, i.e., 3, 5, 6, 7, 8, 3', 4'-heptamethoxyflavone, 3-hydroxynobiletein and tangeretin had significant anti-inflammatory effects. In conclusion, the predicted results indicated that the activity index method is feasible for the accurate prediction of active constituents in TCM formulae.
Animals
;
Anti-Inflammatory Agents
;
chemistry
;
isolation & purification
;
pharmacology
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
Flavones
;
chemistry
;
isolation & purification
;
pharmacology
;
Lipopolysaccharides
;
toxicity
;
Macrophages
;
drug effects
;
metabolism
;
Medicine, Chinese Traditional
;
Mice
;
Molecular Structure
;
Nitric Oxide
;
metabolism
;
Plant Extracts
;
chemistry
;
pharmacology
;
Plants, Medicinal
;
chemistry
;
RAW 264.7 Cells

Result Analysis
Print
Save
E-mail