1.Withaminimas A-F, six withanolides with potential anti-inflammatory activity from Physalis minima.
Shan-Shan WEI ; Cai-Yun GAO ; Rui-Jun LI ; Ling-Yi KONG ; Jun LUO
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):469-474
		                        		
		                        			
		                        			Withaminimas A-F (1-6), six new withaphysalin-type withanolides were isolated from the aerial parts of Physalis minima L.. The structures of these compounds were elucidated through a variety of spectroscopic techniques including HR-MS, NMR, and ECD. Compound 1 belongs to rare 18-norwithanolides, and 2-3 were 13/14-secowithanolides. According to the traditional usage of P. minima, inhibitory effects on nitric oxide (NO) production in lipopolysaccaride-activated RAW264.7 macrophages were evaluated, and compounds 1-4 exhibited significant inhibitory effects with IC values among 3.91-18.46 μmol·L.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Physalis
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			RAW 264.7 Cells
		                        			;
		                        		
		                        			Structure-Activity Relationship
		                        			;
		                        		
		                        			Withanolides
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
2.Differences in anti-inflammatory effects between two specifications of Scutellariae Radix in LPS-induced macrophages in vitro.
Qian-Yu CHEN ; Chao-Qun WANG ; Zhi-Wei YANG ; Qi TANG ; Huan-Ran TAN ; Xuan WANG ; Shao-Qing CAI
Chinese Journal of Natural Medicines (English Ed.) 2017;15(7):515-524
		                        		
		                        			
		                        			Scutellariae Radix (SR), the root of Scutellaria baicalensis Georgi, is used as an antipyretic drug and has been demonstrated to have anti-inflammatory activity. SR is divided into two specifications, "Ku Qin" (KQ) and "Zi Qin" (ZQ), for use against different symptoms (upper energizer heat or lower portion of the triple energizer), according to the theory of traditional Chinese medicine (TCM). However, differences in the efficacies of these two specifications have not been determined. In the present study, we aimed to characterize the differences in the anti-inflammatory activities between KQ and ZQ and to explore how their differences are manifested in lipopolysaccharide (LPS)-induced macrophages. Our results showed that, in RAW264.7 cells (a mouse macrophage cell line derived from ascites), KQ and ZQ displayed anti-inflammatory effects by inhibiting the release of nitric oxide (NO), inducible NOS (iNOS), and nuclear factor-κB (NF-κB) in a dose-dependent manner without distinction. In NR8383 cells (a rat alveolar macrophage cell line), KQ and ZQ displayed similar effects on NO, iNOS, and NF-κB as seen in RAW264.7 cells, but KQ showed a higher inhibition rate for NO and iNOS than that shown by ZQ at the same concentration. These results indicated that there were differences in efficacy between KQ and ZQ in treating lung inflammation. Our findings provided an experimental evidence supporting the different uses of KQ and ZQ in clinic, as noted in ancient herbal records.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type II
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			RAW 264.7 Cells
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Scutellaria baicalensis
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
3.Opacity proteins of neisseria gonorrhoeae in lipooligosaccharide mutants lost ability to interact with neutrophil-restricted CEACAM3 (CD66d).
Song ZHANG ; Ya-Ting TU ; Hua-Hua CAI ; Hong-Hui DING ; Qiao LI ; Ying-Xia HE ; Xin-Xin LIU ; Xin WANG ; Feng HU ; Tie CHEN ; Hong-Xiang CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):344-349
		                        		
		                        			
		                        			Lipooligosacharide (LOS) of Neisseria gonorrhoeae (gonococci, GC) is involved in the interaction of GC with host cells. Deletion of the alpha-oligosaccharide (alpha-OS) moiety of LOS (lgtF mutant) significantly impairs invasion of GC into epithelial cell lines. GC opacity (Opa) proteins, such as OpaI, mediate phagocytosis and stimulate chemiluminescence responses in neutrophils in part through interaction with members of the carcinoembryonic antigen (CEA) family, which includes CEACAM3 (CD66d), a human neutrophil specific receptor for phagocytosis of bacteria. In the present work, we examined the effects of OpaI-expressing lgtF mutant on phagocytosis by HeLa-CEACAM3 cells and chemiluminescence responses in neutrophils. The results showed that lgtF mutant even expressing OpaI completely lost the ability to promote either phagocytosis mediated by CEACAM3 interaction in HeLa cells or chemiluminescence responses in neutrophils. These data indicated that Opa proteins in the lgtF mutant, which might result from the conformational change, cannot be functional.
		                        		
		                        		
		                        		
		                        			Antigens, Bacterial
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Carbohydrate Sequence
		                        			;
		                        		
		                        			Carcinoembryonic Antigen
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			HeLa Cells
		                        			;
		                        		
		                        			Host-Pathogen Interactions
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Luminescent Measurements
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Neisseria gonorrhoeae
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathogenicity
		                        			;
		                        		
		                        			Neutrophils
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			microbiology
		                        			;
		                        		
		                        			Phagocytosis
		                        			
		                        		
		                        	
4.Anti-neuro-inflammatory effects of Nardostachys chinensis in lipopolysaccharide-and lipoteichoic acid-stimulated microglial cells.
Sun Young PARK ; Young Hun KIM ; Geuntae PARK
Chinese Journal of Natural Medicines (English Ed.) 2016;14(5):343-353
		                        		
		                        			
		                        			Excessive microglial cell activation is related to the progression of chronic neuro-inflammatory disorders. Heme oxygenase-1 (HO-1) expression mediated by the NFE2-related factor (Nrf-2) pathway is a key regulator of neuro-inflammation. Nardostachys chinensis is used as an anti-malarial, anti-nociceptive, and neurotrophic treatment in traditional Asian medicines. In the present study, we examined the effects of an ethyl acetate extract of N. chinensis (EN) on the anti-neuro-inflammatory effects mediated by HO-1 up-regulation in Salmonella lipopolysaccharide (LPS)- or Staphylococcus aureus lipoteichoic acid (LTA)-stimulated BV2 microglial cells. Our results indicated that EN suppressed pro-inflammatory cytokine production and induced HO-1 transcription and translation through Nrf-2/antioxidant response element (ARE) signaling. EN markedly inhibited LPS- and LTA-induced activation of nuclear factor-kappa B (NF-κB) as well as phosphorylation of mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT). Furthermore, EN protected hippocampal HT22 cells from indirect neuronal toxicity mediated by LPS- and LTA-treated microglial cells. These results suggested that EN impairs LPS- and LTA-induced neuro-inflammatory responses in microglial cells and confers protection against indirect neuronal damage to HT22 cells. In conclusion, our findings indicate that EN could be used as a natural anti-neuro-inflammatory and neuroprotective agent.
		                        		
		                        		
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Heme Oxygenase-1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Microglia
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Nardostachys
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Neuroprotective Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Teichoic Acids
		                        			;
		                        		
		                        			adverse effects
		                        			
		                        		
		                        	
5.Ginkgo biloba extracts attenuate lipopolysaccharide-induced inflammatory responses in acute lung injury by inhibiting the COX-2 and NF-κB pathways.
Xin YAO ; Nan CHEN ; Chun-Hua MA ; Jing TAO ; Jian-An BAO ; Zong-Qi CHENG ; Zu-Tao CHEN ; Li-Yan MIAO
Chinese Journal of Natural Medicines (English Ed.) 2015;13(1):52-58
		                        		
		                        			
		                        			In the present study, we analyzed the role of Ginkgo biloba extract in lipopolysaccharide(LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS. G. biloba extract (12 and 24 mg·kg(-1)) and dexamethasone (2 mg·kg(-1)), as a positive control, were given by i.p. injection. The cells in the bronchoalveolar lavage fluid (BALF) were counted. The degree of animal lung edema was evaluated by measuring the wet/dry weight ratio. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, tumor necrosis factor-a, interleukin-1b, and interleukin-6, were assayed by enzyme-linked immunosorbent assay. Pathological changes of lung tissues were observed by H&E staining. The levels of NF-κB p65 and COX-2 expression were detected by Western blotting. Compared to the LPS group, the treatment with the G. biloba extract at 12 and 24 mg·kg(-1) markedly attenuated the inflammatory cell numbers in the BALF, decreased NF-κB p65 and COX-2 expression, and improved SOD activity, and inhibited MPO activity. The histological changes of the lungs were also significantly improved. The results indicated that G. biloba extract has a protective effect on LPS-induced acute lung injury in mice. The protective mechanism of G. biloba extract may be partly attributed to the inhibition of NF-κB p65 and COX-2 activation.
		                        		
		                        		
		                        		
		                        			Acute Lung Injury
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bronchoalveolar Lavage Fluid
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Cell Count
		                        			;
		                        		
		                        			Cyclooxygenase 2
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Enzyme-Linked Immunosorbent Assay
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Ginkgo biloba
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Interleukin-1beta
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Peroxidase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Phytotherapy
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Pulmonary Edema
		                        			;
		                        		
		                        			Superoxide Dismutase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transcription Factor RelA
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			analysis
		                        			
		                        		
		                        	
6.Study on protective effect of total saponins of Panax japonicus on LPS-induced RAW264. 7 cell inflammation through NF-kappaB pathway.
Yan-Wen DAI ; Ding YUAN ; Jing-Zhi WAN ; Chang-Cheng ZHANG ; Chao-Qi LIU ; Ting WANG
China Journal of Chinese Materia Medica 2014;39(11):2076-2080
OBJECTIVETo observe the anti-inflammatory effect of total saponins of Panax japonicus on LPS-induced RAW264. 7 macrophages.
METHODThe effect of total saponins of P. japonicus of different concentrations on RAW264. 7 cell viability was determined with the MTT method. The NO kit assay was adopted to detect the NO release of total saponins of P. japonicus to LPS-induced RAW264. 7 cells. The enzyme linked immunosorbent assay (ELISA) was used to detect the secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin 1-beta (IL-1beta). The reverse transeriptase-polymerase chain reaction (RT-PCR) was used to determine the expression of inducible nitric oxide synthase (iNOS) ,TNF-alpha,IL-1beta. The protein expression of nuclear transcription factor-kappaB p65 (NF-kappaB p65) was tested by Western blot.
RESULTThe safe medication range of total saponins of P. japonicus was less than 80 mg x L(-1). Compared with the LPS model group, total saponins of P. japonicus high, middle and low dose groups (0.1, 1, 10, 40 mg x L(-1)) could significantly reduce the secretion of NO, TNF-alpha, IL-1beta of LPS-induced RAW264. 7 cells, and inhibit the expressions of iNOS, TNF-alpha and IL-1beta mRNA and the protein expression of NF-kappaB p65.
CONCLUSIONThis study preliminarily proves the protective effect of total saponins of P. japonicus on LPS-induced RAW264.7 macrophages. Its action mechanism may be related to NF-kappaB signal pathway.
Animals ; Anti-Inflammatory Agents ; pharmacology ; Drugs, Chinese Herbal ; pharmacology ; Humans ; Inflammation ; drug therapy ; genetics ; immunology ; Interleukin-1beta ; genetics ; immunology ; Lipopolysaccharides ; adverse effects ; Macrophages ; drug effects ; immunology ; Mice ; NF-kappa B ; genetics ; immunology ; Nitric Oxide ; immunology ; Nitric Oxide Synthase Type II ; genetics ; immunology ; Panax ; chemistry ; Protective Agents ; pharmacology ; Saponins ; pharmacology
7.Effects of glycyrrhizin acid and licorice flavonoids on LPS-induced cytokines expression in macrophage.
Zhao LIU ; Ju-Ying ZHONG ; Er-Ning GAO ; Hong YANG
China Journal of Chinese Materia Medica 2014;39(19):3841-3845
		                        		
		                        			
		                        			Glycyrrhizin acid and licorice flavonoids are the component of Glycyrrhiza uralensis Fisch root that has been used for various medicinal purposes in traditional oriental medicine for thousands of years. Macrophages as a principal component of immune system play an important role in the initiation, modulation and final activation of immune response against pathogens. In the present study, glycyrrhizin acid and licorice flavonoids was investigated the anti-inflammatory effect on lipopolysaccharide (LPS)-induced macrophage cell line of RAW264.7. Well-grown RAW264.7 cells were collected and randomly divided into the blank control group, the LPS(1 mg x L(-1)) group, the dexamethasone (5 mg x L(-1)) with LPS group, the glycyrrhizin acid (400, 80, 16 mg x L(-1)) with LPS group and the licorice flavonoids (200, 40, 8 mg x L(-1)) with LPS group. RAW264.7 cells were cultured in 24-well plates, pre-incubated for 4 h with different concentrations of dexamethasone, glycyrrhizin acid, or licorice flavonoids. Then cells were stimulated for 20 h with LPS. The supernatant of culture medium was collected from each well and determinated the concentrations of cytokines by means of BioPlex mouse cytokines assay. Compared with the control group, the LPS group could significantly induced relatively high levels of granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor( GM-CSF), macrophage inflammatory protein-1 alpha (MIP-1α), macrophage inflammatory protein-1 beta (MIP-1β), regulated upon activation normal T cell expressed and secreted factor (RANTES), tumor necrosis factor alpha ( TNF-α), monocyte chemotactic protein 1 (MCP-1), chemokine (C-X-C motif) ligand 1 (KC), eotaxin, interleukin(IL)-1α, IL-1β, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12 (p40), IL-12 (p70), IL-13, and IL-17 secretion (P < 0.05). The glycyrrhizin acid significantly inhibited IL-1β, IL-3, IL-5, IL-6, IL-10, IL-12 (p40), IL-12 (p70), IL-13, Eotaxin and TNF-α secreted by LPS-stimulated RAW264.7 cells (P < 0.05). The expression levels of IL-6 and Eotaxin were observably decreased in the licorice flavonoids with LPS group (P < 0.05). The data presented here suggested that the glycyrrhizin acid and licorice flavonoids modulate various cytokines secreted by macrophages and were important anti-inflammatory constituent of Licorice.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Flavonoids
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Glycyrrhiza
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Glycyrrhizic Acid
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Mice
		                        			
		                        		
		                        	
8.Recognition of lipopolysaccharide pattern by TLR4 complexes.
Experimental & Molecular Medicine 2013;45(12):e66-
		                        		
		                        			
		                        			Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria. Minute amounts of LPS released from infecting pathogens can initiate potent innate immune responses that prime the immune system against further infection. However, when the LPS response is not properly controlled it can lead to fatal septic shock syndrome. The common structural pattern of LPS in diverse bacterial species is recognized by a cascade of LPS receptors and accessory proteins, LPS binding protein (LBP), CD14 and the Toll-like receptor4 (TLR4)-MD-2 complex. The structures of these proteins account for how our immune system differentiates LPS molecules from structurally similar host molecules. They also provide insights useful for discovery of anti-sepsis drugs. In this review, we summarize these structures and describe the structural basis of LPS recognition by LPS receptors and accessory proteins.
		                        		
		                        		
		                        		
		                        			Amino Acid Sequence
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Binding Sites
		                        			;
		                        		
		                        			Carbohydrate Sequence
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunity, Innate
		                        			;
		                        		
		                        			Lipopolysaccharides/*chemistry/immunology/pharmacology
		                        			;
		                        		
		                        			Molecular Sequence Data
		                        			;
		                        		
		                        			Toll-Like Receptor 4/*chemistry/immunology/metabolism
		                        			
		                        		
		                        	
9.A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-kappaB pathway in BV2 microglial cells.
Young Han LEE ; Seung Hyun JEON ; Se Hyun KIM ; Changyoun KIM ; Seung Jae LEE ; Dongsoo KOH ; Yoongho LIM ; Kyooseob HA ; Soon Young SHIN
Experimental & Molecular Medicine 2012;44(6):369-377
		                        		
		                        			
		                        			Microglial cells are the resident innate immune cells that sense pathogens and tissue injury in the central nervous system (CNS). Microglial activation is critical for neuroinflammatory responses. The synthetic compound 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139) is a novel chalcone-derived compound. In this study, we investigated the effects of DK-139 on Toll-like receptor 4 (TLR4)-mediated inflammatory responses in BV2 microglial cells. DK-139 inhibited lipopolysaccharide (LPS)-induced TLR4 activity, as determined using a cell-based assay. DK-139 blocked LPS-induced phosphorylation of IkappaB and p65/RelA NF-kappaB, resulting in inhibition of the nuclear translocation and trans-acting activity of NF-kappaB in BV2 microglial cells. We also found that DK-139 reduced the expression of NF-kappaB target genes, such as those for COX-2, iNOS, and IL-1beta, in LPS-stimulated BV2 microglial cells. Interestingly, DK-139 blocked LPS-induced Akt phosphorylation. Inhibition of Akt abrogated LPS-induced phosphorylation of p65/RelA, while overexpression of dominant-active p110CAAX enhanced p65/RelA phosphorylation as well as iNOS and COX2 expression. These results suggest that DK-139 exerts an anti-inflammatory effect on microglial cells by inhibiting the Akt/IkappaB kinase (IKK)/NF-kappaB signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Binding Sites
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Chalcones/chemistry/*pharmacology
		                        			;
		                        		
		                        			Cyclooxygenase 2/metabolism
		                        			;
		                        		
		                        			I-kappa B Kinase/metabolism
		                        			;
		                        		
		                        			Inflammation/*drug therapy
		                        			;
		                        		
		                        			Interleukin-1beta/metabolism
		                        			;
		                        		
		                        			Lipopolysaccharides/immunology
		                        			;
		                        		
		                        			Microglia/*drug effects/immunology/metabolism
		                        			;
		                        		
		                        			Molecular Dynamics Simulation
		                        			;
		                        		
		                        			NF-kappa B/*antagonists & inhibitors
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type II/metabolism
		                        			;
		                        		
		                        			Phosphorylation/drug effects
		                        			;
		                        		
		                        			Protein Binding
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/*antagonists & inhibitors
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Toll-Like Receptor 4/*antagonists & inhibitors/metabolism
		                        			;
		                        		
		                        			Transcription Factor RelA/metabolism
		                        			
		                        		
		                        	
10.Protective effects of Hongbeiyegen against immunological liver injury in mice.
Yu-hong SONG ; Qiang LIU ; Yu-yao CHEN ; Zhi-ping LÜ
Journal of Southern Medical University 2008;28(3):494-496
OBJECTIVETo investigate the protective effects of Hongbeiyegen (HBYG) against immunological liver injury induced by bacille Calmette-Guerin (BCG) and lipopolysaccharide (LPS).
METHODSImmunological liver injury was induced in rats by BCG and LPS injected via the tail vein. The liver index, thymus index and spleen index were calculated and the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and nitric oxide (NO) and liver homogenate contents of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) were determined.
RESULTSHBYG significantly improved the liver index, thymus index and spleen index, and reduced the serum levels of ALT, AST and NO, and as the liver homogenate contents of TNF-alpha and IL-1beta.
CONCLUSIONHBYG offers obvious protective effects against immunological injury liver in mice.
Alanine Transaminase ; blood ; Animals ; Aspartate Aminotransferases ; blood ; Chemical and Drug Induced Liver Injury ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Euphorbiaceae ; chemistry ; Female ; Interleukin-1beta ; metabolism ; Lipopolysaccharides ; Liver ; drug effects ; metabolism ; pathology ; Liver Diseases ; immunology ; prevention & control ; Male ; Mice ; Mice, Inbred Strains ; Mycobacterium bovis ; Nitric Oxide ; blood ; Phytotherapy ; Plant Roots ; chemistry ; Treatment Outcome ; Tumor Necrosis Factor-alpha ; metabolism
            
Result Analysis
Print
Save
E-mail