1.Gene cloning and sequence analysis of the RPL29 gene and its effect on lipogenesis in goat intramuscular adipocytes.
Chengsi GONG ; Yaqiu LIN ; Tingting HU ; Yong WANG ; Yanyan LI ; Youli WANG
Chinese Journal of Biotechnology 2023;39(7):2695-2705
The aim of this study was to clone the goat RPL29 gene and analyze its effect on lipogenesis in intramuscular adipocytes. Using Jianzhou big-eared goats as the object, the goat RPL29 gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR), the gene structure and expressed protein sequence were analyzed by bioinformatics, and the mRNA expression levels of RPL29 in various tissues and different differentiation stages of intramuscular adipocytes of goats were detected by quantitative real-time PCR (qRT-PCR). The RPL29 overexpression vector pEGFP-N1-RPL29 constructed by gene recombination was used to transfect into goat intramuscular preadipocytes and induce differentiation. Subsequently, the effect of overexpression of RPL29 on fat droplet accumulation was revealed morphologically by oil red O and Bodipy staining, and changes in the expression levels of genes related to lipid metabolism were detected by qRT-PCR. The results showed that the length of the goat RPL29 was 507 bp, including a coding sequence (CDS) region of 471 bp which encodes 156 amino acid residues. It is a positively charged and stable hydrophilic protein mainly distributed in the nucleus of cells. Tissue expression profiling showed that the expression level of this gene was much higher in subcutaneous adipose tissue and inter-abdominal adipose tissue of goats than in other tissues (P < 0.05). The temporal expression profile showed that the gene was expressed at the highest level at 84 h of differentiation in goat intramuscular adipocytes, which was highly significantly higher than that in the undifferentiated period (P < 0.01). Overexpression of RPL29 promoted lipid accumulation in intramuscular adipocytes, and the optical density values of oil red O staining were significantly increased (P < 0.05). In addition, overexpression of RPL29 was followed by a highly significant increase in ATGL and ACC gene expression (P < 0.01) and a significant increase in FASN gene expression (P < 0.05). In conclusion, the goat RPL29 may promote intra-muscular adipocyte deposition in goats by up-regulating FASN, ACC and ATGL.
Animals
;
Lipogenesis/genetics*
;
Adipogenesis/genetics*
;
Goats/genetics*
;
Adipocytes
;
Cell Differentiation/genetics*
;
Sequence Analysis
;
Cloning, Molecular
2.Antioxidant and antiobesity activities of oral treatment with ethanol extract from sprout of evening primrose (Oenothera laciniata) in high fat diet-induced obese mice
Chung Shil KWAK ; Mi Ju KIM ; Sun Gi KIM ; Sunyeong PARK ; In Gyu KIM ; Heun Soo KANG
Journal of Nutrition and Health 2019;52(6):529-539
PURPOSE: Sprouts of evening primrose (Oenothera laciniata, OL) were reported to have high contents of flavonoids and potent antioxidant activity. This study examined the antioxidant and antiobesity activities of OL sprouts to determine if they could be a natural health-beneficial resource preventing obesity and oxidative stress.METHODS: OL sprouts were extracted with 50% ethanol, evaporated, and lyophilized (OLE). The in vitro antioxidant activity of OLE was examined using four different tests. The antiobesity activity and in vivo antioxidant activity from OLE consumption were examined using high fat diet-induced obese (DIO) C57BL/6 mice.RESULTS: The IC₅₀ for the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging and superoxide dismutase (SOD)-like activities of OLE were 26.2 µg/mL and 327.6 µg/mL, respectively. OLE exhibited the ferric reducing antioxidant power (FRAP) activity of 56.7 µg ascorbic acid eq./mL at 100 µg/mL, and an increased glutathione level by 65.1% at 200 µg/mL compared to the control in the hUC-MSC stem cells. In an animal study, oral treatment with 50 mg or 100 mg of OLE/kg body weight for 14 weeks reduced the body weight gain, visceral fat content, fat cell size, blood leptin, and triglyceride levels, as well as the atherogenic index compared to the high fat diet control group (HFC) (p < 0.05). The blood malondialdehyde (MDA) level and the catalase and SOD-1 activities in adipose tissue were reduced significantly by the OLE treatment compared to HFC as well (p < 0.05). In epididymal adipose tissue, the OLE treatment reduced the mRNA expression of leptin, PPAR-γ and FAS significantly (p < 0.05) compared to HFC while it increased adiponectin expression (p < 0.05).CONCLUSION: OLE consumption has potent antioxidant and antiobesity activities via the suppression of oxidative stress and lipogenesis in DIO mice. Therefore, OLE could be a good candidate as a natural resource to develop functional food products that prevent obesity and oxidative stress.
Adipocytes
;
Adipokines
;
Adiponectin
;
Adipose Tissue
;
Animals
;
Ascorbic Acid
;
Body Weight
;
Catalase
;
Diet, High-Fat
;
Ethanol
;
Flavonoids
;
Functional Food
;
Glutathione
;
In Vitro Techniques
;
Intra-Abdominal Fat
;
Leptin
;
Lipogenesis
;
Malondialdehyde
;
Mice
;
Mice, Obese
;
Natural Resources
;
Obesity
;
Oenothera biennis
;
Oxidative Stress
;
RNA, Messenger
;
Stem Cells
;
Superoxide Dismutase
;
Triglycerides
3.Free fatty acid-induced histone acetyltransferase activity accelerates lipid accumulation in HepG2 cells
Sangwon CHUNG ; Jin Taek HWANG ; Jae Ho PARK ; Hyo Kyoung CHOI
Nutrition Research and Practice 2019;13(3):196-204
BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease triggered by epigenetic alterations, including lysine acetylation at histone or non-histone proteins, affecting the stability or transcription of lipogenic genes. Although various natural dietary compounds have anti-lipogenic effects, their effects on the acetylation status and lipid metabolism in the liver have not been thoroughly investigated. MATERIALS/METHODS: Following oleic-palmitic acid (OPA)-induced lipid accumulation in HepG2 cells, the acetylation status of histone and non-histone proteins, HAT activity, and mRNA expression of representative lipogenic genes, including PPARγ, SREBP-1c, ACLY, and FASN, were evaluated. Furthermore, correlations between lipid accumulation and HAT activity for 22 representative natural food extracts (NExs) were evaluated. RESULTS: Non-histone protein acetylation increased following OPA treatment and the acetylation of histones H3K9, H4K8, and H4K16 was accelerated, accompanied by an increase in HAT activity. OPA-induced increases in the mRNA expression of lipogenic genes were down-regulated by C-646, a p300/CBP-specific inhibitor. Finally, we detected a positive correlation between HAT activity and lipid accumulation (Pearson's correlation coefficient = 0.604) using 22 NExs. CONCLUSIONS: Our results suggest that NExs have novel applications as nutraceutical agents with HAT inhibitor activity for the prevention and treatment of NAFLD.
Acetylation
;
Dietary Supplements
;
Epigenomics
;
Hep G2 Cells
;
Histone Acetyltransferases
;
Histones
;
Lipid Metabolism
;
Lipogenesis
;
Liver
;
Lysine
;
Metabolic Diseases
;
Non-alcoholic Fatty Liver Disease
;
RNA, Messenger
;
Sterol Regulatory Element Binding Protein 1
4.Effects of Eupatilin on Insulin-Like Growth Factor 1-Induced Lipogenesis and Inflammation of SZ95 Sebocytes
Ji Hyun LEE ; Ye Jin LEE ; Ji Young SONG ; Yeong Ho KIM ; Jun Young LEE ; Christos C ZOUBOULIS ; Young Min PARK
Annals of Dermatology 2019;31(4):479-482
No abstract available.
Inflammation
;
Lipogenesis
5.Role of X-Box Binding Protein-1 in Fructose-Induced Lipogenesis in HepG2 Cells.
Xian YU ; Lu-Ping REN ; Chao WANG ; Ya-Jun ZHU ; Han-Ying XING ; Jing ZHAO ; Guang-Yao SONG
Chinese Medical Journal 2018;131(19):2310-2319
BackgroundA high consumption of fructose leads to hepatic steatosis. About 20-30% of triglycerides are synthesized via de novo lipogenesis. Some studies showed that endoplasmic reticulum stress (ERS) is involved in this process, while others showed that a lipotoxic environment directly influences ER homeostasis. Here, our aim was to investigate the causal relationship between ERS and fatty acid synthesis and the effect of X-box binding protein-1 (XBP-1), one marker of ERS, on hepatic lipid accumulation stimulated by high fructose.
MethodsHepG2 cells were incubated with different concentrations of fructose. Upstream regulators of de novo lipogenesis (i.e., carbohydrate response element-binding protein [ChREBP] and sterol regulatory element-binding protein 1c [SREBP-1c]) were measured by polymerase chain reaction and key lipogenic enzymes (acetyl-CoA carboxylase [ACC], fatty acid synthase [FAS], and stearoyl-CoA desaturase-1 [SCD-1]) by Western blotting. The same lipogenesis-associated factors were then evaluated after exposure of HepG2 cells to high fructose followed by the ERS inhibitor tauroursodeoxycholic acid (TUDCA) or the ERS inducer thapsigargin. Finally, the same lipogenesis-associated factors were evaluated in HepG2 cells after XBP-1 upregulation or downregulation through cell transfection.
ResultsExposure to high fructose increased triglyceride levels in a dose- and time-dependent manner and significantly increased mRNA levels of SREBP-1c and ChREBP and protein levels of FAS, ACC, and SCD-1, concomitant with XBP-1 conversion to an active spliced form. Lipogenesis-associated factors induced by high fructose were inhibited by TUDCA and induced by thapsigargin. Triglyceride level in XBP-1-deficient group decreased significantly compared with high-fructose group (4.41 ± 0.54 μmol/g vs. 6.52 ± 0.38 μmol/g, P < 0.001), as mRNA expressions of SREBP-1c (2.92 ± 0.46 vs. 5.08 ± 0.41, P < 0.01) and protein levels of FAS (0.53 ± 0.06 vs. 0.85 ± 0.05, P = 0.01), SCD-1 (0.65 ± 0.06 vs. 0.90 ± 0.04, P = 0.04), and ACC (0.38 ± 0.03 vs. 0.95 ± 0.06, P < 0.01) decreased. Conversely, levels of triglyceride (4.22 ± 0.54 μmol/g vs. 2.41 ± 0.35 μmol/g, P < 0.001), mRNA expression of SREBP-1c (2.70 ± 0.33 vs. 1.00 ± 0.00, P < 0.01), and protein expression of SCD-1 (0.93 ± 0.06 vs. 0.26 ± 0.05, P < 0.01), ACC (0.98 ± 0.09 vs. 0.43 ± 0.03, P < 0.01), and FAS (0.90 ± 0.33 vs. 0.71 ± 0.02, P = 0.04) in XBP-1s-upregulated group increased compared with the untransfected group.
ConclusionsERS is associated with de novo lipogenesis, and XBP-1 partially mediates high-fructose-induced lipid accumulation in HepG2 cells through augmentation of de novo lipogenesis.
Endoplasmic Reticulum Stress ; physiology ; Fatty Liver ; Fructose ; metabolism ; Hep G2 Cells ; Humans ; Lipogenesis ; physiology ; Liver ; Sterol Regulatory Element Binding Protein 1 ; X-Box Binding Protein 1 ; physiology
6.Platycodin D May Improve Acne and Prevent Scarring by Downregulating SREBP-1 Expression Via Inhibition of IGF-1R/PI3K/Akt Pathway and Modulating Inflammation with an Increase in Collagen.
Yoorock SUH ; Ji Hoon YANG ; Ji Young YOON ; Yu Sung CHOI
Annals of Dermatology 2018;30(5):581-587
BACKGROUND: Although many therapeutic agents have been developed, only a few drugs are known to target multiple pathogenic factors in the treatment of acne. OBJECTIVE: The purpose of this study was to identify a new drug candidate, platycodin D, which is a substance extracted from the root of Platycodon grandiflorum. METHODS: Using western blotting and Cell Counting Kit-8 assay, we studied the effects of platycodin D on SEB-1 sebocytes, fibroblasts, and keratinocytes. We investigated its effects in view of lipogenesis, collagen production, anti-inflammatory activity, and dyskeratinization. RESULTS: In SEB-1 sebocytes, platycodin D showed a sebosuppressive effect by downregulating ERK and insulin- like growth factor-1R/PI3K/Akt/sterol-regulatory element binding protein-1 signaling pathways. In addition, adiponectin, one of the adipokines responsible for sebum production, was decreased in platycodin D-treated SEB-1 sebocytes. In fibroblasts, platycodin D increased collagen production and reduced inflammation by inhibiting nuclear factor kappa B and matrix metalloproteinases. Platycodin D also showed anti-inflammatory effects on keratinocytes. It also suppressed keratin 16 expression induced by lipopolysaccharide. Furthermore, platycodin D showed no cytotoxicity on both SEB-1 sebocytes and fibroblasts. CONCLUSION: Our data demonstrate the clinical feasibility of platycodin D for acne treatment and the prevention of acne scarring by sebosuppressive and anti-inflammatory effects, as well as through an increase in collagen levels.
Acne Vulgaris*
;
Adipokines
;
Adiponectin
;
Blotting, Western
;
Cell Count
;
Cicatrix*
;
Collagen*
;
Fibroblasts
;
Inflammation*
;
Keratin-16
;
Keratinocytes
;
Lipogenesis
;
Matrix Metalloproteinases
;
NF-kappa B
;
Platycodon
;
Sebum
7.The antioxidant activity of steamed ginger and its protective effects on obesity induced by high-fat diet in C57BL/6J mice.
Hee Jeong KIM ; Bohkyung KIM ; Eun Gyung MUN ; Soon Yeon JEONG ; Youn Soo CHA
Nutrition Research and Practice 2018;12(6):503-511
BACKGROUND/OBJECTIVES: Ginger, a root vegetable, is known to have antioxidant and antiobesity effects. Preparation, such as by steaming, can affect the chemical composition of prepared root vegetables or herbs and can change their functional activities. In the present study, we investigated the protective effects of steamed ginger against oxidative stress and steatosis in C57BL/6J mice fed a high-fat diet. MATERIALS/METHODS: The levels of polyphenols and flavonoids in two different extracts of steamed ginger, i.e., water extract (SGW) and ethanolic extract (SGE); as well, their antioxidant activities were examined. Forty male C57BL/6J mice were fed a normal diet (ND, n = 10), high-fat diet (HFD, 60% fat, w/w, n = 10), HFD supplemented with 200 mg/kg of SGE or garcinia (GAR) by weight (SGED or GARD, respectively, n = 10) for 12 weeks. Serum chemistry was examined, and the expressions of genes involved in lipid metabolism were determined in the liver. Histological analysis was performed to identify lipid accumulations in epididymal fat pads and liver. RESULTS: The SGE had higher contents of polyphenols and flavonoids and higher DPPH and ABTS⁺ free radical scavenging activities compared to those of SGW. Treatment with SGE or GAR significantly decreased the HFD-induced weight gain. Both SGE and GAR significantly reduced the high serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein levels induced by HFD. Compared to ND, HFD significantly increased hepatic TC and TG levels. SGE or GAR supplementation significantly decreased the increase of hepatic lipids by HFD. Interestingly, SGE had a more significant effect in reducing hepatic TC and TG levels than GAR. Furthermore, hepatic genes involved in lipogenesis and lipolysis were altered in both the SGED and GARD groups. CONCLUSIONS: The present study indicates that steamed ginger supplementation can decrease plasma TC and TG and can inhibit liver steatosis by regulating the expressions of hepatic genes.
Adipose Tissue
;
Animals
;
Chemistry
;
Cholesterol
;
Diet
;
Diet, High-Fat*
;
Ethanol
;
Fatty Liver
;
Flavonoids
;
Garcinia
;
Ginger*
;
Humans
;
Lipid Metabolism
;
Lipogenesis
;
Lipolysis
;
Lipoproteins
;
Liver
;
Male
;
Mice*
;
Obesity*
;
Oxidative Stress
;
Plasma
;
Polyphenols
;
Steam*
;
Triglycerides
;
Vegetables
;
Water
;
Weight Gain
8.Picroside II attenuates fatty acid accumulation in HepG2 cells via modulation of fatty acid uptake and synthesis.
Hiteshi DHAMI-SHAH ; Rama VAIDYA ; Shobha UDIPI ; Srividhya RAGHAVAN ; Shiny ABHIJIT ; Viswanathan MOHAN ; Muthuswamy BALASUBRAMANYAM ; Ashok VAIDYA
Clinical and Molecular Hepatology 2018;24(1):77-87
BACKGROUND/AIMS: Hepatic steatosis is caused by an imbalance between free fatty acids (FFAs) uptake, utilization, storage, and disposal. Understanding the molecular mechanisms involved in FFAs accumulation and its modulation could drive the development of potential therapies for Nonalcoholic fatty liver disease. The aim of the current study was to explore the effects of picroside II, a phytoactive found in Picrorhiza kurroa, on fatty acid accumulation vis-à-vis silibinin, a known hepatoprotective phytoactive from Silybum marianum. METHODS: HepG2 cells were loaded with FFAs (oleic acid:palmitic acid/2:1) for 20 hours to mimic hepatic steatosis. The FFAs concentration achieving maximum fat accumulation and minimal cytotoxicity (500 μM) was standardized. HepG2 cells were exposed to the standardized FFAs concentration with and without picroside II pretreatment. RESULTS: Picroside II pretreatment inhibited FFAs-induced lipid accumulation by attenuating the expression of fatty acid transport protein 5, sterol regulatory element binding protein 1 and stearoyl CoA desaturase. Preatreatment with picroside II was also found to decrease the expression of forkhead box protein O1 and phosphoenolpyruvate carboxykinase. CONCLUSIONS: These findings suggest that picroside II effectively attenuated fatty acid accumulation by decreasing FFAs uptake and lipogenesis. Picroside II also decreased the expression of gluconeogenic genes.
Fatty Acid Transport Proteins
;
Fatty Acids, Nonesterified
;
Hep G2 Cells*
;
Lipogenesis
;
Milk Thistle
;
Non-alcoholic Fatty Liver Disease
;
Phosphoenolpyruvate
;
Picrorhiza
;
Stearoyl-CoA Desaturase
;
Sterol Regulatory Element Binding Protein 1
9.Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease.
Jin Taek HWANG ; Eun Ju SHIN ; Min Yu CHUNG ; Jae Ho PARK ; Sangwon CHUNG ; Hyo Kyoung CHOI
Nutrition Research and Practice 2018;12(2):110-117
BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. MATERIALS/METHODS: The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. RESULTS: EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. CONCLUSIONS: Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.
Allium*
;
Animals
;
Body Weight
;
Diet
;
Diet, Western
;
Drug Combinations
;
Ethanol*
;
Hep G2 Cells
;
Hepatocytes
;
In Vitro Techniques
;
Lipogenesis
;
Liver
;
Liver Diseases
;
Mice
;
Mice, Obese
;
Non-alcoholic Fatty Liver Disease*
;
Oleic Acid
;
Sterol Regulatory Element Binding Protein 1
;
Transcriptional Activation
10.Inhibition of Serotonin Synthesis Induces Negative Hepatic Lipid Balance.
Jun NAMKUNG ; Ko Eun SHONG ; Hyeongseok KIM ; Chang Myung OH ; Sangkyu PARK ; Hail KIM
Diabetes & Metabolism Journal 2018;42(3):233-243
BACKGROUND: Hepatic steatosis is caused by metabolic stress associated with a positive lipid balance, such as insulin resistance and obesity. Previously we have shown the anti-obesity effects of inhibiting serotonin synthesis, which eventually improved insulin sensitivity and hepatic steatosis. However, it is not clear whether serotonin has direct effect on hepatic lipid accumulation. Here, we showed the possibility of direct action of serotonin on hepatic steatosis. METHODS: Mice were treated with para-chlorophenylalanine (PCPA) or LP-533401 to inhibit serotonin synthesis and fed with high fat diet (HFD) or high carbohydrate diet (HCD) to induce hepatic steatosis. Hepatic triglyceride content and gene expression profiles were analyzed. RESULTS: Pharmacological and genetic inhibition of serotonin synthesis reduced HFD-induced hepatic lipid accumulation. Furthermore, short-term PCPA treatment prevented HCD-induced hepatic steatosis without affecting glucose tolerance and browning of subcutaneous adipose tissue. Gene expression analysis revealed that the expressions of genes involved in de novo lipogenesis and triacylglycerol synthesis were downregulated by short-term PCPA treatment as well as long-term PCPA treatment. CONCLUSION: Short-term inhibition of serotonin synthesis prevented hepatic lipid accumulation without affecting systemic insulin sensitivity and energy expenditure, suggesting the direct steatogenic effect of serotonin in liver.
Animals
;
Diabetes Mellitus
;
Diet
;
Diet, High-Fat
;
Energy Metabolism
;
Fatty Liver
;
Fenclonine
;
Gene Expression
;
Glucose
;
Insulin Resistance
;
Lipogenesis
;
Liver
;
Mice
;
Obesity
;
Serotonin*
;
Stress, Physiological
;
Subcutaneous Fat
;
Transcriptome
;
Triglycerides

Result Analysis
Print
Save
E-mail