1.TMAO promotes disorders of lipid metabolism in psoriasis.
Rao LI ; Boyan HU ; Manyun MAO ; Wangqing CHEN ; Wu ZHU
Journal of Central South University(Medical Sciences) 2025;50(3):331-343
OBJECTIVES:
Psoriasis is associated with lipid metabolism disorders, but the underlying mechanisms remain unclear. This study aims to investigate the role of trimethylamine N-oxide (TMAO) in lipid metabolism dysregulation in psoriasis.
METHODS:
An imiquimod (IMQ)-induced psoriasis-like mouse model was used to assess lipid metabolism parameters, TMAO levels, and liver flavin monooxygenase 3 (FMO3) mRNA expression. Blood samples from healthy individuals and psoriatic patients were collected to measure serum TMAO levels and lipid profiles. To clarify the role of TMAO in the lipid metabolism disorder of mice with psoriasis model, exogenous TMAO, choline, or 3,3-dimethyl-1-butanol (DMB) were administered via intraperitoneal injections or diet in IMQ-treated mice. Liver tissues from the mouse models were subjected to RNA sequencing to identify TMAO-regulated signaling pathways.
RESULTS:
IMQ-induced psoriatic mice exhibited abnormal glucose, insulin, and lipid levels. IMQ treatment also downregulated the hepatic mRNA expression of glucose transporter 2 (Glut2) and silence information regulator 1 (Sirt1), while upregulating glucose transporter 4 (Glut4) and peroxisome proliferator-activated receptor gamma (PPARγ). Elevated serum TMAO levels were observed in both psoriatic patients and IMQ-treated mice. Additionally, liver FMO3 mRNA expression was increased in the psoriatic mouse model. In patients, TMAO levels positively correlated with Psoriasis Area and Severity Index (PASI) scores, serum triglyceride (TG), and total cholesterol (TC) levels. The intraperitoneal injection of TMAO exacerbated lipid dysregulation in IMQ-treated mice. A choline-rich diet further aggravated lipid abnormalities and liver injury in psoriatic mice, whereas DMB treatment alleviated these effects. RNA-Seq analysis demonstrated that TMAO upregulated hepatic microRNA-122 (miR-122), which may suppress the expression of gremlin 2 (GREM2), thus contributing to lipid metabolism disorder.
CONCLUSIONS
TMAO may promote lipid metabolism dysregulation in psoriasis by modulating the hepatic miR-122/GREM2 pathway.
Animals
;
Methylamines/blood*
;
Mice
;
Psoriasis/chemically induced*
;
Lipid Metabolism/drug effects*
;
Humans
;
Male
;
Liver/metabolism*
;
Female
;
Oxygenases/genetics*
;
Disease Models, Animal
;
Lipid Metabolism Disorders/etiology*
;
Adult
;
Mice, Inbred C57BL
2.Live combined Bacillus subtilis and Enterococcus faecium improves glucose and lipid metabolism in type 2 diabetic mice with circadian rhythm disruption via the SCFAs/GPR43/GLP-1 pathway.
Ruimin HAN ; Manke ZHAO ; Junfang YUAN ; Zhenhong SHI ; Zhen WANG ; Defeng WANG
Journal of Southern Medical University 2025;45(7):1490-1497
OBJECTIVES:
To investigate the effects of live combined Bacillus subtilis and Enterococcus faecium (LCBE) on glucose and lipid metabolism in mice with type 2 diabetes mellitus (T2DM) and circadian rhythm disorder (CRD) and explore the possible mechanisms.
METHODS:
KM mice were randomized into normal diet (ND) group (n=8), high-fat diet (HFD) group (n=8), and rhythm-intervention with HFD group (n=16). After 8 weeks of feeding, the mice were given an intraperitoneal injection of streptozotocin (100 mg/kg) to induce T2DM. The mice in CRD-T2DM group were further randomized into two equal groups for treatment with LCBE (225 mg/kg) or saline by gavage; the mice in ND and HFD groups also received saline gavage for 8 weeks. Blood glucose level of the mice was measured using a glucometer, and serum levels of Bmal1, PER2, insulin, C-peptide and lipids were determined with ELISA. Colon morphology and hepatic lipid metabolism of the mice were examined using HE staining and Oil Red O staining, respectively, and fecal short-chain fatty acids (SCFAs) was detected using LC-MS; GPR43 and GLP-1 expression levels were analyzed using RT-qPCR and Western blotting.
RESULTS:
Compared with those in CRD-T2DM group, the LCBE-treated mice exhibited significant body weight loss, lowered levels of PER2, insulin, C-peptide, total cholesterol (TC) and LDL-C, and increased levels of Bmal1 and HDL-C levels. LCBE treatment significantly increased SCFAs, upregulated GPR43 and GLP-1 expressions at both the mRNA and protein levels, and improved hepatic steatosis and colon histology.
CONCLUSIONS
LCBE ameliorates lipid metabolism disorder in CRD-T2DM mice by reducing body weight and improving lipid profiles and circadian regulators possibly via the SCFAs/GPR43/GLP-1 pathway.
Animals
;
Mice
;
Lipid Metabolism
;
Diabetes Mellitus, Type 2/metabolism*
;
Enterococcus faecium
;
Glucagon-Like Peptide 1/metabolism*
;
Bacillus subtilis
;
Diabetes Mellitus, Experimental/metabolism*
;
Circadian Rhythm
;
Blood Glucose/metabolism*
;
Receptors, G-Protein-Coupled/metabolism*
;
Fatty Acids, Volatile/metabolism*
;
Male
;
Chronobiology Disorders/metabolism*
3.Ching Shum Pills alleviates non-alcoholic fatty liver disease in mice by ameliorating lipid metabolism disorders.
Biyun LUO ; Xin YI ; Yijing CAI ; Shiqing ZHANG ; Peng WANG ; Tong LI ; Ken Kin Lam YUNG ; Pingzheng ZHOU
Journal of Southern Medical University 2025;45(9):1840-1849
OBJECTIVES:
To investigate the effect of Ching Shum Pills (CSP) for alleviating non-alcoholic fatty liver disease (NAFLD) and the underlying mechanism.
METHODS:
In a mouse model of NAFLD, the therapeutic effect of CSP was evaluated by measuring serum glucose, lipid profiles (TC, TG, LDL-C, HDL-C), and hepatic function markers. Network pharmacology was employed to identify active compounds in CSP and their targets using TCMSP, HERB, SwissTargetPrediction, GeneCards, OMIM, and DisGeNET. Protein-protein interaction (PPI) networks, Gene Ontology (GO), and KEGG pathway analyses were conducted. Molecular docking (AutoDock Vina) was used to assess the compound-target binding affinities. Quantitative real-time PCR (qRT-PCR) was used to validate the mRNA expressions of the core genes in the liver tissue of the mouse models.
RESULTS:
In the mouse model of NAFLD, treatment with CSP significantly reduced body weight gain and serum TG levels of the mice, and high-dose CSP treatment resulted in obvious reduction of ALT levels and hepatic fat accumulation. Network pharmacology analysis identified quercetin and 2-monolinolenin as the key bioactives in CSP, which target TNF, AKT1, IL6, TP53, and ALB. Docking simulations suggested strong binding between the two core compounds and their target proteins. The results of qRT-PCR showed that high-fat diet induced significant downregulation of Tp53, Cpt1, and Ppara expressions in mice, which was effectively reversed by CSP treatment.
CONCLUSIONS
CSP can improve lipid metabolism disorders in NAFLD mice through a regulatory mechanism involving multiple targets and pathways to reduce liver fat accumulation and protect liver function. The key components in CSP such as quercetin and linolenic acid monoacylglycerol may participate in the regulation of such metabolic processes as fatty acid oxidation by targeting TP53.
Animals
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Lipid Metabolism/drug effects*
;
Molecular Docking Simulation
;
Disease Models, Animal
;
Liver/metabolism*
;
Male
;
Lipid Metabolism Disorders/drug therapy*
;
PPAR alpha/metabolism*
;
Mice, Inbred C57BL
;
Network Pharmacology
4.Melatonin Ameliorates Abnormal Sleep-Wake Behavior via Facilitating Lipid Metabolism in a Zebrafish Model of Parkinson's Disease.
Meng-Zhu PANG ; Han-Xing LI ; Xue-Qin DAI ; Xiao-Bo WANG ; Jun-Yi LIU ; Yun SHEN ; Xing XU ; Zhao-Min ZHONG ; Han WANG ; Chun-Feng LIU ; Fen WANG
Neuroscience Bulletin 2024;40(12):1901-1914
Sleep-wake disorder is one of the most common nonmotor symptoms of Parkinson's disease (PD). Melatonin has the potential to improve sleep-wake disorder, but its mechanism of action is still unclear. Our data showed that melatonin only improved the motor and sleep-wake behavior of a zebrafish PD model when melatonin receptor 1 was present. Thus, we explored the underlying mechanisms by applying a rotenone model. After the PD zebrafish model was induced by 10 nmol/L rotenone, the motor and sleep-wake behavior were assessed. In situ hybridization and real-time quantitative PCR were used to detect the expression of melatonin receptors and lipid-metabolism-related genes. In the PD model, we found abnormal lipid metabolism, which was reversed by melatonin. This may be one of the main pathways for improving PD sleep-wake disorder.
Animals
;
Zebrafish
;
Melatonin/pharmacology*
;
Lipid Metabolism/drug effects*
;
Disease Models, Animal
;
Rotenone/pharmacology*
;
Sleep Wake Disorders/metabolism*
;
Parkinson Disease/metabolism*
;
Motor Activity/drug effects*
;
Sleep/drug effects*
5.Research progress on regulation of N6-adenylate methylation modification in lipid metabolism disorders.
Shu-Ya CHEN ; An-Yu NI ; Qiu-Hui QIAN ; Jin YAN ; Xue-Dong WANG ; Hui-Li WANG
Acta Physiologica Sinica 2023;75(3):439-450
Lipid metabolism is a complex physiological process, which is closely related to nutrient regulation, hormone balance and endocrine function. It involves the interactions of multiple factors and signal transduction pathways. Lipid metabolism disorder is one of the main mechanisms to induce a variety of diseases, such as obesity, diabetes, non-alcoholic fatty liver disease, hepatitis, hepatocellular carcinoma and their complications. At present, more and more studies have found that the "dynamic modification" of N6-adenylate methylation (m6A) on RNA represents a new "post-transcriptional" regulation mode. m6A methylation modification can occur in mRNA, tRNA, ncRNA, etc. Its abnormal modification can regulate gene expression changes and alternative splicing events. Many latest references have reported that m6A RNA modification is involved in the epigenetic regulation of lipid metabolism disorder. Based on the major diseases induced by lipid metabolism disorders, we reviewed the regulatory roles of m6A modification in the occurrence and development of those diseases. These overall findings inform further in-depth investigations of the underlying molecular mechanisms regarding the pathogenesis of lipid metabolism disorders from the perspective of epigenetics, and provide reference for health prevention, molecular diagnosis and treatment of related diseases.
Humans
;
Methylation
;
Epigenesis, Genetic
;
Lipid Metabolism/genetics*
;
Lipid Metabolism Disorders/genetics*
;
Liver Neoplasms
;
RNA
6.Perfluorooctanoic acid-induced lipid metabolism disorder in SD rat liver and its effect on the expression of fatty acid metabolism-related proteins.
Li WANG ; Yongbing ZHOU ; Xinzhuang MA ; Weiqiang SUN ; Hui LIU
Journal of Central South University(Medical Sciences) 2022;47(1):18-25
OBJECTIVES:
Perfluorooctanoic acid (PFOA) can cause lipid metabolism disorders in animal body and affect the lipolysis and synthesis of fatty acids. Peroxisome proliferators-activated receptor (PPAR) plays an extremely important role in this process. This study aims to explore the effects of PFOA on liver lipid metabolism disorders in Sprague Dewley (SD) rats and the expression of PPAR.
METHODS:
A total of 40 male SD rats were randomly divided into 4 groups (n=10 in each group): a control group (ddH2O), a low-dose PFOA group [PFOA 1.25 mg/(kg·d)], a middle-dose PFOA group [PFOA 5.00 mg/(kg·d)], and a high-dose PFOA group [PFOA 20.00 mg/(kg·d)]. The rats were fed with normal diet, and PFOA exposure were performed by oral gavage for 14 days, and the rats were observed, weighted and recorded every day during the exposure. After the exposure, the blood was collected, and the livers were quickly stripped after the rats were killed. Part of the liver tissues were fixed in 4% paraformaldehyde for periodic acid-schiff (PAS) staining; the contents of HDLC, LDLC, TG, TC in serum and liver tissues, as well as the activities of their related enzymes were assayed; The expression levels of cyclic adenosine monophosphate-response element binding protein (Cbp), general control of amino acid synthesis 5-like 2 (Gcn5L2), peroxidation peroxisome proliferation factor activated receptor γ (PPAR), silent information regulator 1 (Sirt1) and human retinoid X receptor alpha 2 (Rxrα2) ) were detected by Western blotting.
RESULTS:
After 14 days of PFOA exposure, the PAS staining positive particles in the cytoplasm and nucleus of SD rats in the medium and high dose groups were significantly reduced compared with the control group. The serum levels of LDLC and TC in the low-dose and middle-dose groups were significantly reduced compared with the control group (all P<0.05), while the high-dose group showed an increasing tendency, without siginificant difference (P>0.05), there was no significant difference in HDLC and TG (both P>0.05). The activities of alkaline phosphatase (AKP) and alanine aminotransferase (ALT) were increased significantly (both P<0.05) compared with control group; the ratio of ALT/aspartate aminotransferase (AST) in the high-dose group was increased significantly (P<0.05), there was no significant difference in LDH and TG (both P>0.05); the HDLC content in the liver tissues in the high-dose group was significantly reduced, compared with the control group (P<0.05); the TC contents in the liver tissues in the low, medium and high-dose groups were significantly increased (all P<0.05), there was no significant difference in LDLC and TG (both P>0.05); the AKP activity in the livers in the medium and high-dose groups was significantly increased (both P<0.05), there was no siginificant difference in LDH, ALT, and the ratio of ALT/AST (all P>0.05); the protein expression levels of Ppar γ, Cbp and Rxrα2 in the liver in the high dose groups were significantly down-regulated compared with the control group (all P<0.05), while the protein expression levels of Sirt1 were significantly up-regulated (all P<0.05).
CONCLUSIONS
PFOA exposure can cause lipid metabolism disorder and glycogen reduction in SD rat livers, which may be related to the activation of Sirt1 and inhibition of Ppar γ expression, leading to affecting the normal metabolism of fatty acids and promoting glycolysis.
Animals
;
Caprylates
;
Fatty Acids/pharmacology*
;
Fluorocarbons
;
Lipid Metabolism
;
Lipid Metabolism Disorders/metabolism*
;
Liver/metabolism*
;
Male
;
PPAR gamma
;
Rats
;
Rats, Sprague-Dawley
;
Sirtuin 1/metabolism*
7.Therapeutic Effects of Different Animal Bile Powders on Lipid Metabolism Disorders and Their Composition Analysis.
Da-Xin CHEN ; Jian-Feng CHU ; Shan LIN ; Ling ZHANG ; Hong-Wei CHEN ; Zhi-Wei SUN ; Jian-Feng XU ; Qiao-Yan CAI ; Li-Li WANG ; Jun PENG
Chinese journal of integrative medicine 2022;28(10):918-923
OBJECTIVE:
To compare the therapeutic effect of different animal bile powders on lipid metabolism disorders induced by high-fat diet in rats, and analyze the bioactive components of each animal bile powder.
METHODS:
Sixty Sprague-Dawley rats were randomly divided into 6 groups (n=10): normal diet control group, high-fat diet model group, high-fat diet groups orally treated with bear, pig, cow and chicken bile powders, respectively. Serum biochemical markers from the abdominal aorta in each group were analyzed. Changes in the body weight and liver weight were recorded. Pathohistological changes in the livers were examined. High performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was used to determine the composition of bioactive components in each animal bile powder.
RESULTS:
Treatment with different types of animal bile powders had different inhibitory effects on high-fat diet-induced increase of body weight and/or liver weight in rats, most notably in bear and pig bile powders (P<0.05). High-fat diet induced lipid metabolism disorder in rats, which could be reversed by treatment with all kinds of bile powders. Bear bile and chicken bile showed the most potent therapeutic effect against lipid metabolism disorder. Cow and bear bile effectively alleviated high-fat diet induced liver enlargement and discoloration, hepatocyte swelling, infiltration of inflammatory cells and formation of lipid vacuoles. Bioactive component analysis revealed that there were significant differences in the relative content of taurocholic acid, taurodeoxycholic acid and ursodeoxycholic acid among different types of animal bile. Interestingly, a unique component with molecular weight of 496.2738 Da, whose function has not yet been reported, was identified only in bear bile powder.
CONCLUSIONS
Different animal bile powders had varying therapeutic effect against lipid metabolism disorders induced by high-fat diet, and bear bile powder demonstrated the most effective benefits. Bioactive compositions were different in different types of animal bile with a novel compound identified only in bear bile powder.
Animals
;
Bile/metabolism*
;
Biomarkers/metabolism*
;
Body Weight
;
Cattle
;
Diet, High-Fat
;
Female
;
Lipid Metabolism
;
Lipid Metabolism Disorders/metabolism*
;
Lipids/analysis*
;
Liver/metabolism*
;
Powders
;
Rats
;
Rats, Sprague-Dawley
;
Swine
;
Taurodeoxycholic Acid/metabolism*
;
Ursidae/metabolism*
;
Ursodeoxycholic Acid/metabolism*
8.Cold stress reduces lifespan and mobility of C. elegans by mediating lipid metabolism disorder and abnormal stress.
Hao SHI ; Chao ZHANG ; Jia Min ZHAO ; Yi Wen LI ; Yun Jia LI ; Jun Jie LI ; Zhi Yun ZENG ; Lei GAO
Journal of Southern Medical University 2022;42(8):1159-1165
OBJECTIVE:
To investigate the changes of lipid metabolism and stress response of adult C.elegans exposed to non-freezing low temperature and explore the possible mechanism.
METHODS:
The survival rate and activity of adult C.elegans cultured at 20℃ or 4℃ were observed.Lipid metabolism of the cultured adult C.elegans was evaluated using oil red O staining and by detecting the expressions of the genes related with lipid metabolism.The effects of low temperature exposure on stress level of adult C.elegans were evaluated using mitochondrial fluorescence staining and by detecting the expression levels of stress-related genes and antioxidant genes at both the mRNA and protein levels.
RESULTS:
The lifespan and activity of adult C.elegans exposed to low temperature were significantly reduced with decreased lipid accumulation (P < 0.05) and decreased expressions of genes related with fatty acid synthesis and metabolism (fat-5, fat-6, fat-7, fasn-1, nhr-49, acs-2 and aco-1;P < 0.01).Cold stress significantly increased the expressions of heat shock proteins hsp-70 and hsp16.2(P < 0.05) but lowered the number of mitochondria (P < 0.0001) and the expressions of atfs-1, sod-2, sod-3 and gpx-1(P < 0.05).Knockout of fat-5, nhr-49 or both fat-5 and fat-6 obviously enhanced the sensitivity of C.elegans to cold stress as shown by further reduced activity (P < 0.05) and reduced survival rate at 24 h (P < 0.0001) under cold stress.
CONCLUSION
Exposure to a low temperature at 4℃ results in lowered lipid metabolism of adult C.elegans accompanied by a decreased mitochondrial number and quality control ability, which triggers high expressions of stress-related genes and causes reduction of antioxidant capacity, thus callsing lowered activity and reduced lifespan of C.elegans.
Animals
;
Antioxidants/metabolism*
;
Caenorhabditis elegans
;
Caenorhabditis elegans Proteins/genetics*
;
Cold-Shock Response
;
Lipid Metabolism
;
Lipid Metabolism Disorders
;
Longevity/genetics*
9.Molecular mechanism of Gegen Qinlian Decoction in promoting differentiation of brown adipose tissue to improve glucose and lipid metabolism disorders in diabetic rats.
Xiao-Qing ZHANG ; Wen-Hua XU ; Xin XIAO ; Jun-Feng DING ; Yue JIANG ; Jun TU
China Journal of Chinese Materia Medica 2021;46(17):4462-4470
This study explored the molecular mechanism underlying the Gegen Qinlian Decoction(GQD) promoting the differentiation of brown adipose tissue(BAT) to improve glucose and lipid metabolism disorders in diabetic rats. After the hypoglycemic effect of GQD on diabetic rats induced by high-fat diet combined with a low dose of streptozotocin was confirmed, the total RNA of rat BAT around scapula was extracted. Nuclear transcription genes Prdm16, Pparγc1α, Pparα, Pparγ and Sirt1, BAT marker genes Ucp1, Cidea and Dio2, energy expenditure gene Ampkα2 as well as BAT secretion factors Adpn, Fndc5, Angptl8, IL-6 and Rbp4 were detected by qPCR, then were analyzed by IPA software. Afterward, the total protein from rat BAT was extracted, and PRDM16, PGC1α, PPARγ, PPARα, SIRT1, ChREBP, AMPKα, UCP1, ADPN, NRG4, GLUT1 and GLUT4 were detected by Western blot. The mRNA expression levels of Pparγc1α, Pparα, Pparγ, Ucp1, Cidea, Ampkα2, Dio2, Fndc5, Rbp4 and Angptl8 were significantly increased(P<0.05) and those of Adpn and IL-6 were significantly decreased(P<0.05) in the GQD group compared with the diabetic group. In addition, Sirt1 showed a downward trend(P=0.104), whereas Prdm16 tended to be up-regulated(P=0.182) in the GQD group. IPA canonical pathway analysis and diseases-and-functions analysis suggested that GQD activated PPARα/RXRα and SIRT1 signaling pathways to promote the differentiation of BAT and reduce the excessive lipid accumulation. Moreover, the protein expression levels of PRDM16, PGC1α, PPARα, PPARγ, SIRT1, ChREBP, AMPKα, UCP1, GLUT1, GLUT4 and NRG4 were significantly decreased in the diabetic group(P<0.01), which were elevated after GQD intervention(P<0.05). Unexpectedly, the expression of ADPN protein in the diabetic group was up-regulated(P<0.01) as compared with the control group, which was down-regulated after the administration with GQD(P<0.01). This study indicated that GQD promoted BAT differentiation and maturity to increase energy consumption, which reduced the glucose and lipid metabolism disorders and thereby improved diabetes symptoms.
Adipose Tissue, Brown
;
Animals
;
Diabetes Mellitus, Experimental/genetics*
;
Drugs, Chinese Herbal
;
Fibronectins
;
Glucose
;
Lipid Metabolism
;
Lipid Metabolism Disorders
;
Rats
10.Di (2-ethylhexyl) phthalate Disorders Lipid Metabolism via TYK2/STAT1 and Autophagy in Rats.
Yue Zhu ZHANG ; Zhao Ming ZHANG ; Li Ting ZHOU ; Jian ZHU ; Xiao Han ZHANG ; Wen QI ; Shuang DING ; Qi XU ; Xu HAN ; Ya Ming ZHAO ; Xin Yue SONG ; Tian Yang ZHAO ; Lin YE
Biomedical and Environmental Sciences 2019;32(6):406-418
OBJECTIVE:
Previous studies have indicated that the plasticizer di (2-ethylhexyl) phthalate (DEHP) affects lipid accumulation; however, its underlying mechanism remains unclear. We aim to clarify the effect of DEHP on lipid metabolism and the role of TYK2/STAT1 and autophagy.
METHODS:
In total, 160 Wistar rats were exposed to DEHP [0, 5, 50, 500 mg/(kg•d)] for 8 weeks. Lipid levels, as well as mRNA and protein levels of TYK2, STAT1, PPARγ, AOX, FAS, LPL, and LC3 were detected.
RESULTS:
The results indicate that DEHP exposure may lead to increased weight gain and altered serum lipids. We observed that DEHP exposure affected liver parenchyma and increased the volume or number of fat cells. In adipose tissue, decreased TYK2 and STAT1 promoted the expression of PPARγ and FAS. The mRNA and protein expression of LC3 in 50 and 500 mg/(kg•d) groups was increased significantly. In the liver, TYK2 and STAT1 increased compensatorily; however, the expression of FAS and AOX increased, while LPL expression decreased. Joint exposure to both a high-fat diet and DEHP led to complete disorder of lipid metabolism.
CONCLUSION
It is suggested that DEHP induces lipid metabolism disorder by regulating TYK2/STAT1. Autophagy may play a potential role in this process as well. High-fat diet, in combination with DEHP exposure, may jointly have an effect on lipid metabolism disorder.
Adipose Tissue
;
drug effects
;
metabolism
;
Animals
;
Autophagy
;
drug effects
;
Body Weight
;
drug effects
;
Diet, High-Fat
;
adverse effects
;
Diethylhexyl Phthalate
;
toxicity
;
Endocrine Disruptors
;
toxicity
;
Female
;
Lipid Metabolism
;
drug effects
;
Lipid Metabolism Disorders
;
chemically induced
;
Liver
;
drug effects
;
metabolism
;
Male
;
Rats, Wistar
;
STAT1 Transcription Factor
;
metabolism
;
TYK2 Kinase
;
metabolism

Result Analysis
Print
Save
E-mail