1.Effect of epigallocatechin-3-gallate on liver lipid metabolism in rats with intrauterine growth restriction and related mechanism.
Lian-Hui CHEN ; Min WU ; Xiao-Hao HU ; Yong-Fen WANG
Chinese Journal of Contemporary Pediatrics 2020;22(1):65-70
OBJECTIVE:
To study the effect of epigallocatechin-3-gallate (EGCG) on liver lipid metabolism in rats with intrauterine growth restriction (IUGR) and related mechanism.
METHODS:
A rat model of IUGR was established by food restriction during entire pregnancy, and then the rats were randomly divided into an IUGR group and an EGCG group (n=8 each). The rats in the EGCG group were fed with water containing EGCG from after weaning to 10 weeks. Eight pup rats born from the pregnant maternal rats without food restriction were used as the control group. At the age of 13 weeks, body weight was measured. Blood and liver tissue samples were collected to measure fasting total cholesterol (TC), triglyceride (TG), free fatty acid (FFA), fasting plasma glucose (FPG), fasting insulin (FINS), and liver lipids. Homeostasis model assessment of insulin resistance (HOMA-IR) and adipose insulin resistance (adipo-IR) were calculated. Pathological sections of the liver were observed and quantitative real-time PCR was used to measure the mRNA expression of related genes in the liver.
RESULTS:
At the age of 13 weeks, there was no significant difference in body weight between groups (P=0.067). There were significant differences between groups in FPG, FFA, FINS, HOMA-IR, and adipo-IR (P<0.05). There were no significant differences in the serum levels of TC and TG between groups (P>0.05), while the IUGR group had significantly higher levels of TC and TG in the liver than the EGCG group (P<0.05). Oil red staining showed that the IUGR group had a significant increase in hepatic lipid accumulation, while the EGCG group had certain improvement after EGCG treatment. PCR results suggested that compared with the control group, the IUGR group had significant reductions in the mRNA expression of Ampk and Adipor1 and a significant increase in the mRNA expression of Srebf1 (P<0.05), while EGCG increased the mRNA expression of Ampk and reduced the mRNA expression of Srebf1, with no significant differences in the two indices between the EGCG and control groups (P>0.05).
CONCLUSIONS
Early EGCG intervention can down-regulate the de novo synthesis of fatty acids through the Ampk/Srebf1 signaling pathway and reduce hepatic lipid accumulation in IUGR rats by improving insulin resistance of hepatocytes.
Animals
;
Catechin
;
analogs & derivatives
;
Female
;
Fetal Growth Retardation
;
Insulin Resistance
;
Lipid Metabolism
;
Lipids
;
Liver
;
Pregnancy
;
Rats
2.LC/MS guided approach to discovering nephroprotective substances from Huangkui capsule.
Tingting MA ; Yi WANG ; Xiaoqian CHEN ; Xiaoping ZHAO
Journal of Zhejiang University. Medical sciences 2017;46(1):66-73
To discover the nephroprotective substances from Huangkui capsule.The components of Huangkui capsule were isolated by preparative liquid chromatography, and the active components were screened by LC/MS and identified. The adriamycine-injured HK-2 cells were treated with various active components with different concentrations, and the malonaldehyde (MDA) content, adenosine triphosphate (ATP) level and mitochondrial oxygen consumption rate were measured to verify the protective activity of the compounds.Four active components in Huangkui capsule were identified to exert nephroprotective effects. Fifteen flavanoids from these four components were tentatively identified by LC/MS, and hyperin, myricetin, quercetin, rutin and isoquercetin were confirmed. Hyperin, myricetin quercetin and rutin showed dose-dependent protective effects on injured HK-2 cells. Espacially, hyperin significantly reduced MDA content, quercetin and rutin significantly increased ATP level, and myricetin significantly increased mitochondrial oxygen consumption rate.Hyperin, myricetin, querctein and rutin might be the potential nephroprotective compounds in Huangkui capsule, their effects may be related to the inhibition of lipid peroxidation and the alleviation of mitochondrial damage.
Abelmoschus
;
chemistry
;
drug effects
;
Adenosine Triphosphate
;
metabolism
;
Cell Line, Transformed
;
Chromatography, Liquid
;
Doxorubicin
;
Drugs, Chinese Herbal
;
Epithelial Cells
;
drug effects
;
Flavonoids
;
pharmacology
;
Kidney Diseases
;
chemically induced
;
drug therapy
;
prevention & control
;
Kidney Tubules, Proximal
;
drug effects
;
Lipid Peroxidation
;
drug effects
;
Malondialdehyde
;
metabolism
;
Mass Spectrometry
;
Mitochondria
;
drug effects
;
Oxygen Consumption
;
drug effects
;
Protective Agents
;
chemistry
;
pharmacology
;
Quercetin
;
analogs & derivatives
;
pharmacology
;
Rutin
;
pharmacology
3.An analysis of clinical characteristics and gene mutation in two patients with medium- and short-chain acyl-CoA dehydrogenase deficiency.
Jian-Qiang TAN ; Da-Yu CHEN ; Zhe-Tao LI ; Ji-Wei HUANG ; Ti-Zhen YAN ; Ren CAI
Chinese Journal of Contemporary Pediatrics 2016;18(10):1019-1025
Medium- and short-chain acyl-CoA dehydrogenase deficiency is a disorder of fatty acid β-oxidation. Gene mutation prevents medium- and short-chain fatty acids from entry into mitochondria for oxidation, which leads to multiple organ dysfunction. In this study, serum acylcarnitines and the organic acid profile in urea were analyzed in two children whose clinical symptoms were hypoglycemia and metabolic acidosis. Moreover, gene mutations in the two children and their parents were evaluated. One of the patients was a 3-day-old male who was admitted to the hospital due to neonatal asphyxia, sucking weakness, and sleepiness. The serum acylcarnitine profile showed increases in medium-chain acylcarnitines (C6-C10), particularly in C8, which showed a concentration of 3.52 μmol/L (reference value: 0.02-0.2 μmol/L). The analysis of organic acids in urea gave a normal result. Sanger sequencing revealed a reported c.580A>G (p.Asn194Asp) homozygous mutation at exon 7 of the ACADM gene. The other patient was a 3-month-old female who was admitted to the hospital due to cough and recurrent fever for around 10 days. The serum acylcarnitine profile showed an increase in serum C4 level, which was 1.66 μmol/L (reference value: 0.06-0.6 μmol/L). The analysis of organic acids in urea showed an increase in the level of ethyl malonic acid, which was 55.9 (reference value: 0-6.2). Sanger sequencing revealed a reported c.625G>A (p.Gly209Ser) homozygous mutation in the ACADS gene. This study indicates that screening tests for genetic metabolic diseases are recommended for children who have unexplained metabolic acidosis and hypoglycemia. Genetic analyses of the ACADM and ACADS genes are helpful for the diagnosis of medium- and short-chain acyl-CoA dehydrogenase deficiency.
Acyl-CoA Dehydrogenase
;
deficiency
;
genetics
;
Carnitine
;
analogs & derivatives
;
blood
;
Female
;
Humans
;
Infant
;
Infant, Newborn
;
Lipid Metabolism, Inborn Errors
;
genetics
;
Male
;
Mutation
;
Urea
;
analysis
4.Pandanus tectorius derived caffeoylquinic acids inhibit lipid accumulation in HepG2 hepatoma cells through regulation of gene expression involved in lipid metabolism.
Chong-ming WU ; Hong LUAN ; Shuai WANG ; Xiao-po ZHANG ; Hai-tao LIU ; Peng GUO
Acta Pharmaceutica Sinica 2015;50(3):278-283
The fruit of Pandanus tectorius (PTF) has a long history of use as a folk medicine to treat hyperlipidemia in Hainan province, South China. Our previous studies have shown that the n-butanol extract of PTF is rich in caffeoylquinic acids and has an adequate therapeutic effect on dyslipidemic animals induced by high-fat diet. In this work, seven caffeoylquinic acids isolated from PTF were screened for the lipid-lowering activity in HepG2 hepatoma cells. Oil-Red O staining, microscopy and intracellular triglyceride (TG) and total cholesterol (TC) quantification showed that 3-O-caffeoylquinic acid (3-CQA), 3, 5-di-O-caffeoylquinic acid (3,5-CQA), and 3,4,5-tri-O-caffeoylquinic acid (3,4,5-CQA) significantly inhibited lipid accumulation induced by oleic acid and decreased intracellular levels of TC and TG in a dose-dependent manner. These three caffeoylquinic acids showed no significant cytotoxicity at concentrations of 1 -50 μmol x L(-1) as determined by MTT assay. Realtime quantitative PCR revealed that 3-CQA and 3, 5-CQA significantly increased the expression of lipid oxidation-related genes PPARα, CPT-1 and ACOX1 while 3-CQA, 3, 5-CQA and 3,4,5-CQA decreased the expression of lipogenic genes SREBP-1c, SREBP-2, HMGR, ACC, FAS. Overall, 3-CQA, 3, 5-CQA and 3, 4, 5-CQA may be the principal hypolipidemic components in PTF which can decrease intracellular lipid accumulation through up-regulating the expression of lipid oxidative genes and down-regulating the expression of lipogenic genes.
Carcinoma, Hepatocellular
;
metabolism
;
China
;
Cholesterol
;
metabolism
;
Gene Expression Regulation
;
Hep G2 Cells
;
Humans
;
Lipid Metabolism
;
Liver Neoplasms
;
metabolism
;
Oleic Acid
;
Pandanaceae
;
chemistry
;
Quinic Acid
;
analogs & derivatives
;
chemistry
;
Sterol Regulatory Element Binding Protein 1
;
Triglycerides
;
metabolism
5.Sodium nitrite reduces lipid accumulation in steatotic cells by enhancing autophagy.
You-jing ZHANG ; Nai-rui ZHENG ; Bin LIU ; Ai-ling JI ; Yan-zhang LI ; Chao-shen HUANGFU
Acta Pharmaceutica Sinica 2015;50(8):1000-1007
Recent data have revealed that inhibiting autophagy exacerbates lipid accumulation in hepatocytes and nitrite treatment reduces total triglyceride levels in the high-fat diet mice. Therefore, the present study aimed to determine the effects of nitrite on simple hepatic steatosis and the possible role of autophagy. Firstly, steatotic L-02 cells were induced by incubating L-02 cells with 1.2 mmol · L(-1) oleic acid (OA) for 24 h. Secondly, steatotic L-02 cells were treated with 0.2 mmol · L(-1) sodium nitrite (SN) plus 3-methyladenine (3-MA), or chloroquine (CQ) for 24 h, and then lipid accumulation was measured with oil red O staining and triglyceride quantification. The notable steatosis could be observed in L-02 cells following exposure to 1.2 mmol · L(-1) OA for 24 h. Treatment with 0.2 mmol · L(-1) sodium nitrite reduced lipid accumulation in steatotic L-02 cells. 3-MA weakened the ability of sodium nitrite to ameliorate hepatic steatosis. Additionally, the sodium nitrite increased number of LC3-II immunostaining puncta and LC3-II protein expression was confirmed by immunofluorescence or Western blot analysis, and the effects were enhanced by CQ treatment. The number of increased cytoplasm vacuoles and lysosomes increased was confirmed by phase contrast and fluorescence microscope respectively. The increased autolysosome was detected by electron microscopy, this phenomenon could be reversed by CQ treatment. These data demonstrated that sodium nitrite enhanced the autophagic flux and decomposition of triglycerides in steatotic L-02 cells.
Adenine
;
analogs & derivatives
;
Autophagy
;
Blotting, Western
;
Cells, Cultured
;
Chloroquine
;
Cytoplasm
;
Fatty Liver
;
Hepatocytes
;
drug effects
;
Humans
;
Lipid Metabolism
;
drug effects
;
Microscopy, Fluorescence
;
Microtubule-Associated Proteins
;
metabolism
;
Oleic Acid
;
Sodium Nitrite
;
pharmacology
;
Triglycerides
7.Antitumor efficacy of irinotecan-loaded galactosyl modified lipid bilayer-coated mesoporous silica nanoparticles against hepatocellular carcinoma cells.
Xi CHEN ; Xin-Xin ZHANG ; Fei-Fei LI ; Ya-Nan ZHAO ; Zheng JIA ; Yong GAN ; Juan LI
Acta Pharmaceutica Sinica 2014;49(5):718-725
The purpose of this study is to prepare galactosyl modified lipid bilayer-coated mesoporous silica nanoparticles (GPEM) to enhance the antitumor efficacy against hepatocellular carcinoma cells. The irinotecan (CPT-11) loaded mesoporous silica nanoparticles (MSNs) was coated with the Gal-P123 modified functional lipid bilayer by thin-film dispersion method. Nanoparticles were characterized with particle size, zeta potential, morphology and drug release in vitro. Afterwards, the cell uptake, intracellular concentration of CPT-11, cell apoptosis rate and cytotoxicity were evaluated on human hepatocellular carcinoma cell line Huh-7. The results showed that MSNs were coated with intact lipid bilayers and the nanoparticles had clear core-shell structure. GPEM is stable with the mean particle size of (78.01 +/- 2.04) nm. The low leakage rate in normal physiological conditions in vitro is contributed to the protection of stable lipid bilayer, and the fast drug release in acid environment due to the destruction of the lipid bilayer. On the cell level, the vector could improve the intracellular CPT-11 concentration by 4 times because of the functional lipid bilayer. The high CPT-11 concentration led to the increasement of apoptosis rate by 48.6%, and the reduction of half maximal inhibitory concentration (IC50) values of CPT-11 by 2 times, indicating stronger cell cytotoxicity.
Antineoplastic Agents
;
chemistry
;
pharmacokinetics
;
Apoptosis
;
Camptothecin
;
analogs & derivatives
;
chemistry
;
pharmacokinetics
;
Carcinoma, Hepatocellular
;
drug therapy
;
pathology
;
Drug Carriers
;
chemistry
;
Drug Delivery Systems
;
methods
;
Humans
;
Lipid Bilayers
;
chemistry
;
Liver Neoplasms
;
drug therapy
;
pathology
;
Nanoparticles
;
chemistry
;
Particle Size
;
Silicon Dioxide
;
chemistry
8.Evaluation of dose-related effects of 2', 3', 5'-tri-O-acetyl-N6-(3-hydroxylaniline)adenosine using NMR-based metabolomics.
Zhao-Xia MIAO ; Liu YANG ; Chun-Ying JIANG ; Ying-Hong WANG ; Hai-Bo ZHU
Acta Pharmaceutica Sinica 2014;49(5):679-685
2', 3', 5'-Tri-O-acetyl-N6-(3-hydroxylaniline)adenosine (WS070117) is a derivative compound of natural product cordycepin. It has significant lipids regulating activity and low toxicity which has been proved by in vitro and in vivo experiments. In this study, 1H NMR-based metabolomics was used to investigate the dose-related effects of WS070117 on hyperlipidemia of high-fat-fed hamsters. The hyperlipidemic hamsters were administrated with six different doses of WS070117, including 3, 12, 50, 100, 200 and 400 mg x kg(-1) x d(-1). 1H NMR spectra of hamster serum were visually and statistically analyzed using two multivariate analyses: principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA). As a result, WS070117-treated groups showed dose-related regulation of metabolites associated with lipid metabolism, choline metabolism and glucose metabolism. The dose of 3 mg x kg(-1) x d(-1) of WS070117 only exhibited a little lipids regulating activity. However, the doses of 12 and 50 mg x kg(-1) x d(-1) of WS070117 both regulated the contents of metabolites to reverse significantly toward normal levels. When the dose of WS070117 reached 100 mg x kg(-1) x d(-1), it was more effective than positive control drugs. The work suggested that NMR-based metabolomics might be a valuable approach to evaluate dose-related effects of lipids regulating compounds.
Adenosine
;
analogs & derivatives
;
pharmacology
;
Animals
;
Cricetinae
;
Hyperlipidemias
;
metabolism
;
Least-Squares Analysis
;
Lipid Metabolism
;
drug effects
;
Magnetic Resonance Spectroscopy
;
Metabolomics
;
Multivariate Analysis
;
Principal Component Analysis
9.Levels of biological markers of nitric oxide in serum of patients with squamous cell carcinoma of the oral cavity.
Wioletta RATAJCZAK-WRONA ; Ewa JABLONSKA ; Bozena ANTONOWICZ ; Dorota DZIEMIANCZYK ; Stanislawa Zyta GRABOWSKA
International Journal of Oral Science 2013;5(3):141-145
The aim of the study was a determination of the levels of nitric oxide (NO) and its biological markers such as malonyldialdehyde (MDA) and nitrotyrosine in the serum of patients with squamous cell carcinoma (SCC) of the oral cavity and identification of the relationships between NO and those markers. These studies were performed on patients with SCC of the oral cavity before and after treatment. Griess reaction was used for the estimation of the total concentration of NO in serum. The nitrotyrosine level in serum was assessed with an enzyme-linked immunosorbent assay (ELISA) kit, and MDA level using a spectrophotometric assay. Higher concentrations of NO in blood serum were determined in patients with stage IV of the disease before treatment in comparison to the control group and patients with stages II and III of the disease. Moreover, higher concentrations of MDA and nitrotyrosine were determined in the serum of patients in all stages of the disease in comparison to healthy people. After treatment, lower concentrations of NO in the serum of patients with stage IV of the disease were observed in comparison to the amounts obtained prior to treatment. In addition, lower levels of nitrotyrosine in the serum of patients with all stages of the disease were recorded, whereas higher concentrations of MDA were determined in these patients in comparison to results obtained before treatment. The compounds formed with the contribution of NO, such as MDA and nitrotyrosine, may lead to cancer progression in patients with SCC of the oral cavity, and contribute to formation of resistance to therapy in these patients as well. Moreover, the lack of a relationship between concentrations of NO and MDA, and between NO and nitrotyrosine in serum suggests that the process of lipid peroxidation and nitration in patients with SCC does not just depend on NO.
Aged
;
Carcinoma, Squamous Cell
;
blood
;
metabolism
;
Case-Control Studies
;
Female
;
Humans
;
Lipid Peroxidation
;
Male
;
Malondialdehyde
;
blood
;
Mouth Neoplasms
;
blood
;
metabolism
;
Nitric Oxide
;
blood
;
Statistics, Nonparametric
;
Tyrosine
;
analogs & derivatives
;
blood
10.Preliminary study on pH-sensitive lipid bilayer-coated mesoporous silica nanoparticles as a novel drug carrier for antitumor drug.
Fei-Fei LI ; Xin-Xin ZHANG ; Shi-Yan GUO ; Yong GAN ; Juan LI
Acta Pharmaceutica Sinica 2013;48(2):291-297
This study plans to prepare lipid bilayer-coated mesoporous silica nanoparticles (LMSNs) which are pH sensitive with core-shell structure to improve the tumor cell lethality of antitumor drug. The lipid coated mesoporous silica nanoparticles loaded with irinotecan (CPT-11) (CPT-11-LMSNs) were prepared by hot water-film hydration method, and the characterized its morphology, particle size and release in vitro. Meanwhile, the intracellular uptake and cell toxicity of CPT-11-LMSNs and intracellular accumulation of CPT-11 were evaluated on human breast carcinoma cell line (MCF-7). The results indicated that the mean diameter of the spherical LMSNs was (120.27 +/- 5.91) nm. The slow release in simulated normal physiological conditions and a rapid release under simulated intracellular condition demonstrated the pH sensitivity of CPT-11-MSNs in vitro. Moreover, the CPT-11-LMSN could improve the intracellular CPT-11 cumulant 2.1 times and reduce half maximal inhibitory concentration (IC50) values of CPT-11 1.4 times compared with CPT-11-MSNs, demonstrating a stronger cell lethality.
Antineoplastic Agents, Phytogenic
;
administration & dosage
;
pharmacology
;
Camptothecin
;
administration & dosage
;
analogs & derivatives
;
pharmacology
;
Cell Proliferation
;
drug effects
;
Drug Carriers
;
Humans
;
Hydrogen-Ion Concentration
;
Lipid Bilayers
;
administration & dosage
;
chemistry
;
MCF-7 Cells
;
Nanoparticles
;
Particle Size
;
Porosity
;
Silicon Dioxide
;
administration & dosage
;
chemistry

Result Analysis
Print
Save
E-mail