1.Study on the targets and mechanisms of 7-hydroxyethyl chrysin in prevention and treatment of high-altitude cerebral edema using proteomics technology.
Dongmei ZHANG ; Xiaolin LI ; Chenyu YANG ; Linlin JING ; Lei HE ; Huiping MA
Journal of Zhejiang University. Medical sciences 2025;54(4):549-558
OBJECTIVES:
To investigate the targets and mechanisms of 7-hydroxyethyl chrysin (7-HEC) in prevention and treatment of high-altitude cerebral edema (HACE) in rats.
METHODS:
Fifty-four male Wistar rats were randomly divided into normal control group, HACE model group, and 7-HEC-treated group (18 rats in each group). Except for the normal control group, rats in the two other groups were exposed to a hypobaric hypoxic chamber simulating a 7000 m altitude for 72 h to establish the HACE model. The 7-HEC-treated group was intraperitoneally injected with 7-HEC (150 mg·kg-¹·d-¹) for 3 consecutive days before modeling, while the model group received equivalent isotonic sodium chloride solution. Tandem Mass Tag (TMT) proteomics technology was used to detect differentially expressed proteins (DEPs) with screening criteria set at a fold change >1.2 and P<0.05. Western blotting was used to verify the expression levels of target proteins. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) network analysis were performed.
RESULTS:
Compared with the normal control group, 256 DEPs were identified in the HACE model group. Compared with the HACE model group, 87 DEPs were identified in the 7-HEC-treated group. Among them, 19 DEPs that were dysregulated in the HACE model group were restored after 7-HEC intervention, of which seven (HSPA4, Arhgap20, SERT, HACL1, CCDC43, POLR3A, and PCBD1) were confirmed by Western blotting. GO enrichment analysis of the DEPs between the HACE model and 7-HEC-treated groups revealed their involvement in 13 biological processes, five cellular components, and two molecular functions. KEGG pathway analysis indicated associations with the mRNA surveillance pathway, Th17 cell differentiation, serotonergic synapse, RNA polymerase, protein processing in the endoplasmic reticulum, peroxisome, neuroactive ligand-receptor interaction, folate biosynthesis. PPI network analysis demonstrated that HSPA4, POLR3A, and HACL1, which were validated by Western blotting, interacted with multiple signaling pathways and ranked among the top 20 hub proteins by degree value, suggesting their potential role as core regulatory factors. Arhgap20, SERT and PCBD1 also exhibited interactions with several proteins, suggesting their potential as key regulatory proteins, whereas no interactions for CCDC43 were identified.
CONCLUSIONS
This study applied TMT proteomics to identify seven potential therapeutic targets of 7-HEC for the prevention and treatment of HACE. These targets may be involved in the pathogenesis of HACE through multiple pathways, including maintaining cellular homeostasis, ameliorating oxidative stress, regulating energy metabolism, and reducing vascular permeability.
Animals
;
Male
;
Proteomics/methods*
;
Rats, Wistar
;
Flavonoids/therapeutic use*
;
Rats
;
Brain Edema/etiology*
;
Altitude Sickness/metabolism*
;
Protein Interaction Maps
2.Ablation of macrophage transcriptional factor FoxO1 protects against ischemia-reperfusion injury-induced acute kidney injury.
Yao HE ; Xue YANG ; Chenyu ZHANG ; Min DENG ; Bin TU ; Qian LIU ; Jiaying CAI ; Ying ZHANG ; Li SU ; Zhiwen YANG ; Hongfeng XU ; Zhongyuan ZHENG ; Qun MA ; Xi WANG ; Xuejun LI ; Linlin LI ; Long ZHANG ; Yongzhuo HUANG ; Lu TIE
Acta Pharmaceutica Sinica B 2025;15(6):3107-3124
Acute kidney injury (AKI) has high morbidity and mortality, but effective clinical drugs and management are lacking. Previous studies have suggested that macrophages play a crucial role in the inflammatory response to AKI and may serve as potential therapeutic targets. Emerging evidence has highlighted the importance of forkhead box protein O1 (FoxO1) in mediating macrophage activation and polarization in various diseases, but the specific mechanisms by which FoxO1 regulates macrophages during AKI remain unclear. The present study aimed to investigate the role of FoxO1 in macrophages in the pathogenesis of AKI. We observed a significant upregulation of FoxO1 in kidney macrophages following ischemia-reperfusion (I/R) injury. Additionally, our findings demonstrated that the administration of FoxO1 inhibitor AS1842856-encapsulated liposome (AS-Lipo), mainly acting on macrophages, effectively mitigated renal injury induced by I/R injury in mice. By generating myeloid-specific FoxO1-knockout mice, we further observed that the deficiency of FoxO1 in myeloid cells protected against I/R injury-induced AKI. Furthermore, our study provided evidence of FoxO1's pivotal role in macrophage chemotaxis, inflammation, and migration. Moreover, the impact of FoxO1 on the regulation of macrophage migration was mediated through RhoA guanine nucleotide exchange factor 1 (ARHGEF1), indicating that ARHGEF1 may serve as a potential intermediary between FoxO1 and the activity of the RhoA pathway. Consequently, our findings propose that FoxO1 plays a crucial role as a mediator and biomarker in the context of AKI. Targeting macrophage FoxO1 pharmacologically could potentially offer a promising therapeutic approach for AKI.
3.Tuihuang Mixture improves α‑naphthylisothiocyanate-induced cholestasis in rats by inhibiting NLRP3 inflammasomes via regulating farnesoid X receptor.
Zhengwang ZHU ; Linlin WANG ; Jinghan ZHAO ; Ruixue MA ; Yuchun YU ; Qingchun CAI ; Bing WANG ; Pingsheng ZHU ; Mingsan MIAO
Journal of Southern Medical University 2025;45(4):718-724
OBJECTIVES:
To study the therapeutic mechanism of Tuihuang Mixture against cholestasis.
METHODS:
Forty-eight Wistar rats were randomized equally into blank group, model group, ursodeoxycholic acid group and Tuihuang Mixture group. Except for those in the blank group, all the rats were given α‑naphthylisothiocyanate (ANIT) to establish rat models of cholestasis, followed by treatments with indicated drugs or distilled water. Serum levels of ALT, AST, ALP, γ-GT, TBA and TBIL of the rats were determined, and hepatic expressions IL-1β, IL-18, FXR, NLRP3, ASC, Caspase-1 and GSDMD were detected using q-PCR, ELISA or Western blotting. Histopathological changes of the liver tissues were observed using HE staining.
RESULTS:
The rat models of cholestasis had significantly increased serum levels of ALT, AST, ALP, γ-GT, TBA and TBIL with increased mRNA and protein expressions of IL-1β and IL-18, decreased protein and mRNA expressions of FXR, and increased protein expressions of NLRP3 and Caspase-1 and mRNA expressions of NLRP3, ASC, Caspase-1 and GSDMD in the liver tissue, showing also irregular arrangement of liver cells, proliferation of bile duct epithelial cells and inflammatory cells infiltration. Treatment of the rat models with Tuihuang Mixture significantly decreased serum levels of ALT, AST, ALP, γ-GT, TBA and TBIL, lowered IL-1β and IL-18 and increased FXR protein and mRNA expressions, and reduced NLRP3, ASC, Caspase-1 and GSDMD proteins and NLRP3, ASC and Caspase-1 mRNA expressions in the liver tissue. Tuihuang Mixture also significantly alleviated hepatocyte injury, bile duct epithelial cell proliferation and inflammatory cell infiltration in the liver of the rat models.
CONCLUSIONS
Tuihuang Mixture can effectively improve cholestasis in rats possibly by inhibiting NLRP3 inflammatosome-mediated pyroptosis via regulating FXR.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Rats
;
Receptors, Cytoplasmic and Nuclear/metabolism*
;
Cholestasis/drug therapy*
;
Rats, Wistar
;
Inflammasomes/metabolism*
;
1-Naphthylisothiocyanate
;
Drugs, Chinese Herbal/therapeutic use*
;
Male
;
Interleukin-18/metabolism*
;
Caspase 1/metabolism*
;
Interleukin-1beta/metabolism*
;
Liver/metabolism*
4.The regulatory role and mechanism of microRNA in cholestasis
Linlin WANG ; Zhengwang ZHU ; Jinghan ZHAO ; Ruixue MA ; Bing WANG ; Pingsheng ZHU ; Mingsan MIAO
Journal of Clinical Hepatology 2025;41(10):2187-2194
As a type of endogenous small non-coding RNA, microRNA (miRNA) can regulate gene expression and thereby intervene against the development and progression of cardiovascular diseases, neurodegenerative diseases, metabolic diseases, and autoimmune diseases. The pathogenesis of cholestasis is complex and is mainly associated with the metabolism and transport of bile acids, oxidative stress, inflammatory response, and intestinal flora. Currently, ursodeoxycholic acid is the preferred drug for the clinical treatment of cholestasis, but it may cause adverse reactions and exhibit poor efficacy in some patients. Studies have shown that miRNA can intervene in the disease process of cholestasis through multiple mechanisms such as regulating bile acid metabolism and transport, alleviating oxidative stress, inhibiting inflammatory response, improving cholangiocyte proliferation, and regulating intestinal flora. It can be used as a new biomarker and action target for cholestasis, with high research potential and value. Therefore, this article summarizes the role and mechanisms of miRNA in regulating cholestasis in recent years, in order to provide a reference for further research on the prevention and treatment of cholestasis by targeting miRNA.
5.A real-world study of the clinical application of the Paris system for reporting urinary cytology in cancer hospital
Huan ZHAO ; Zhihui ZHANG ; Huiqin GUO ; Na WEI ; Haiyue MA ; Linlin ZHAO ; Yue SUN ; Cong WANG ; Xinxiang CHANG ; Xingang BI ; Nianzeng XING
Chinese Journal of Oncology 2024;46(7):703-709
Objectives:To evaluate the clinical value of the Paris system for reporting urinary cytology (TPS) in the diagnosis of urothelial carcinoma (UC).Methods:A total of 1 744 cytological diagnostic records (from 751 cases) were collected retrospectively. All specimens were voided urines and histopathology as the gold standard. The sensitivity and specificity of urinary cytological diagnosis of UC and risk of high grade malignant (ROHM) in each diagnostic category were compared.Results:There were 360 cases with histopathology. The percentage of negative for high-grade urothelial carcinoma (NHGUC) was 30.1% (226/751), atypical urothelial cells (AUC) was 29.8% (224/751), suspicious for high-grade urothelial carcinoma (SHGUC) was 16.8% (126/751), high grade urothelial carcinoma (HGUC) was 21.2% (159/751), and non-urothelial malignancy (NUM) was 2.1% (16/751). The histpathologic ROHM corresponding to each cytological diagnosis category were 27.3% for NHGUC, 32.7% for AUC, 74.7% for SHGUC, 96.6% for HGUC and 100.0% for NUM, respectively. ROHM of SHGUC was significantly higher than that of AUC group, and the difference between the two groups was statistically significant ( P<0.001). ROHM of HGUC group was significantly higher than that of SHGUC group, and the difference was statistically significant ( P<0.001). With SHGUC as the cut-off value, the sensitivity and specificity of cytological diagnosis of HGUC were 76.7% (165/215) and 85.7% (18/21), and with HGUC as the cut-off value, the sensitivity and specificity of cytological diagnosis of HGUC were 53.0% (114/215) and 100.0% (21/21), respectively. Conclusions:Urine cytology has high sensitivity and specificity in the diagnosis of HGUC. The malignant risk of TPS varies with different diagnosis category. The high malignant risk population in cancer hospital leads to the relatively high malignant proportion and ROHM in each diagnosis category. Urinary cytology TPS reporting system is helpful to clinical management and has good clinical application value.
6.Progress in the application of AIT in allergic airway diseases
Linlin WANG ; Yuan MA ; Zhihong CHEN ; Haiying JI
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(4):427-431
Allergen specific immunotherapy(AIT)is to identify the patient's allergen,give the patient repeated exposure to the allergen extract,and gradually increase the concentration and dose until the target maintenance dose is reached,so that the patient can develop tolerance to the allergen,which is the only treatment that can regulate the pathogenesis of allergic diseases and change its natural course.In recent years,domestic and for-eign scholars have made great progress in the clini-cal practice and research field of AIT.This article re-viewed the relevant progress of the mechanism,ef-ficacy and drug administration of AIT.
7.Progress in the application of AIT in allergic airway diseases
Linlin WANG ; Yuan MA ; Zhihong CHEN ; Haiying JI
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(4):427-431
Allergen specific immunotherapy(AIT)is to identify the patient's allergen,give the patient repeated exposure to the allergen extract,and gradually increase the concentration and dose until the target maintenance dose is reached,so that the patient can develop tolerance to the allergen,which is the only treatment that can regulate the pathogenesis of allergic diseases and change its natural course.In recent years,domestic and for-eign scholars have made great progress in the clini-cal practice and research field of AIT.This article re-viewed the relevant progress of the mechanism,ef-ficacy and drug administration of AIT.
8.Progress in the application of AIT in allergic airway diseases
Linlin WANG ; Yuan MA ; Zhihong CHEN ; Haiying JI
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(4):427-431
Allergen specific immunotherapy(AIT)is to identify the patient's allergen,give the patient repeated exposure to the allergen extract,and gradually increase the concentration and dose until the target maintenance dose is reached,so that the patient can develop tolerance to the allergen,which is the only treatment that can regulate the pathogenesis of allergic diseases and change its natural course.In recent years,domestic and for-eign scholars have made great progress in the clini-cal practice and research field of AIT.This article re-viewed the relevant progress of the mechanism,ef-ficacy and drug administration of AIT.
9.Progress in the application of AIT in allergic airway diseases
Linlin WANG ; Yuan MA ; Zhihong CHEN ; Haiying JI
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(4):427-431
Allergen specific immunotherapy(AIT)is to identify the patient's allergen,give the patient repeated exposure to the allergen extract,and gradually increase the concentration and dose until the target maintenance dose is reached,so that the patient can develop tolerance to the allergen,which is the only treatment that can regulate the pathogenesis of allergic diseases and change its natural course.In recent years,domestic and for-eign scholars have made great progress in the clini-cal practice and research field of AIT.This article re-viewed the relevant progress of the mechanism,ef-ficacy and drug administration of AIT.
10.Progress in the application of AIT in allergic airway diseases
Linlin WANG ; Yuan MA ; Zhihong CHEN ; Haiying JI
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(4):427-431
Allergen specific immunotherapy(AIT)is to identify the patient's allergen,give the patient repeated exposure to the allergen extract,and gradually increase the concentration and dose until the target maintenance dose is reached,so that the patient can develop tolerance to the allergen,which is the only treatment that can regulate the pathogenesis of allergic diseases and change its natural course.In recent years,domestic and for-eign scholars have made great progress in the clini-cal practice and research field of AIT.This article re-viewed the relevant progress of the mechanism,ef-ficacy and drug administration of AIT.

Result Analysis
Print
Save
E-mail