1.Analysis of the Correlation between Plasma Fibrinogen and Osteoporosis Defined by Quantitative Computed Tomography
Yingna CHEN ; Kan SUN ; Na LI ; Chengzhi WANG ; Chulin HUANG ; Lingling LI ; Huisheng XIAO ; Guojuan LAO
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):147-153
ObjectiveTo clarify the associations between plasma fibrinogen (Fbg) and volumetric bone mineral density (vBMD) as well as osteoporosis measured by quantitative computed tomography (QCT), and to explore the role of plasma Fbg in early screening and diagnosis of osteoporosis. MethodsPatients with hypertension who were hospitalized in the Department of Endocrinology of Sun Yat-sen Memorial Hospital of Sun Yat-sen University from January 2018 to June 2022 and underwent QCT examinations were included for cross-sectional analysis. The study analyzed the correlation between plasma Fbg and osteoporosis in patients. The diagnostic efficacy of plasma Fbg for osteoporosis was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). ResultsTotally 441 subjects were included in the analysis, with an average age of 46.0±14.5 years and a prevalence of osteoporosis of 6.4% (28/441). As the level of plasma fibrinogen increased, the incidence of osteoporosis significantly increased (P<0.000 1)while the average bone mineral density of L1 and L2 were significantly decreased (P<0.05). Compared with the first quartile of plasma Fbg(1.99g/L -2.37g/L), the risk of osteoporosis in the fourth quartile of plasma Fbg (3.67g/L-4.46g/L) increased by 8.85 times after adjusting for related confounding factors. ConclusionThis study found a negative correlation between plasma fibrinogen levels and bone density in patients with hypertension. Plasma fibrinogen levels may serve as a potential screening indicator for osteoporosis, aiding in early diagnosis and therapeutic monitoring. This discovery offers a new perspective for the study of bone metabolic diseases and warrants further investigation.
2.Value of serum Aldo-keto reductase family 1 member B10 (AKR1B10) in diagnosis of hepatocellular carcinoma
Yunling DU ; Changjiang SHI ; Fangyuan GAO ; Mengna ZHANG ; Lingling WANG ; Zhuqing ZHANG ; Ying MING ; Shoujun XIE
Journal of Clinical Hepatology 2025;41(4):684-689
ObjectiveTo investigate the expression of serum Aldo-keto reductase family 1 member B10 (AKR1B10) in patients with hepatocellular carcinoma (HCC) in northern China, and to provide a new and valuable biomarker for the clinical diagnosis of HCC. MethodsThis study was conducted among 102 patients with HCC, 119 patients with benign liver disease, and 132 patients with other malignant tumors who attended The Affiliated Hospital of Chengde Medical University and 148 healthy individuals who underwent physical examination from May 2020 to May 2024. ELISA and chemiluminescence were used to measure the serum levels of AKR1B10 and alpha-fetoprotein (AFP). The Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups, and the Kruskal-Wallis H test was used for comparison between three groups and further comparison between two groups; the chi-square test was used for comparison of categorical data between groups. The area under the ROC curve (AUC) was used to assess diagnostic efficiency. ResultsThe expression level of AKR1B10 was 3 053.79 (1 475.67 — 4 605.86) pg/mL in the HCC group, 1 324.42 (659.68 — 2 023.88) pg/mL in the benign liver disease group, 660.68 (377.56 — 2 087.77) pg/mL in the other malignant tumor group, and 318.30 (82.73 — 478.82) pg/mL in the healthy group, with a significant difference between the four groups (H=240.86, P<0.001), and further comparison between two groups showed that the HCC group had a significantly higher level than the other three groups (all P<0.001). The ROC curve analysis of the HCC group and the other three groups showed that serum AKR1B10 had an optimal cut-off value of 1 584.97 pg/mL in the diagnosis of HCC, with an AUC of 0.86 (95% confidence interval [CI]: 0.82 — 0.90), a sensitivity of 74.3%, and a specificity of 85.2%. Compared with each indicator alone, a combination of AKR1B10 and AFP could improve the sensitivity (81.8%) and specificity (91.4%) of HCC diagnosis. AKR1B10 had an AUC of 0.84 (95%CI: 0.78 — 0.90) in the diagnosis of patients with early- or middle-stage HCC, with a sensitivity of 76.2% and a specificity of 81.2%. AKR1B10 had an AUC of 0.85 (95%CI: 0.77 — 0.92) in the diagnosis of patients with AFP-negative HCC, with a sensitivity of 81.6% and a specificity of 79.9%. ConclusionAKR1B10 is a promising serological marker for the diagnosis of HCC, and a combination of AKR1B10 and AFP can improve the detection rate of HCC patients in northern China, especially those with early- or middle-stage HCC and AFP-negative HCC.
3.Mechanism of Tangbikang Dry Paste in Prevention and Treatment of Type 2 Diabetic Peripheral Neuropathy Based on GLO-1/AGE/RAGE Pathway
Lijia WU ; Chengfei ZHANG ; Xiaolei JIA ; Lingling QIN ; Haiyan WANG ; Yukun HUANG ; You WANG ; Xincui BAO ; Jing YANG ; Cuiyan LYU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):60-69
ObjectiveTo investigate the mechanism of Tangbikang dry paste in the prevention and treatment of type 2 diabetic peripheral neuropathy (DPN) based on the glyoxalase-1 (GLO-1)/advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) pathway. MethodsA total of 56 Sprague-Dawley rats were randomly divided, with eight assigned to the normal group. The remaining 48 rats were fed a high-fat diet combined with intraperitoneal injection of streptozotocin (STZ) to induce a type 2 diabetes mellitus (T2DM) model. Based on blood glucose levels, the rats were randomly assigned to the model group, Tanglin group (13.5 mg·kg-1), metformin group (135 mg·kg-1), and Tangbikang dry paste low-, medium-, and high-dose groups (3, 6, 12 g·kg-1). Successful modeling of DPN was confirmed by a decrease in mechanical pain threshold in the model group at week 4. Fasting blood glucose, body weight, and mechanical pain threshold were measured every 4 weeks. After 16 weeks of intervention, the pathological morphology of the sciatic nerve was observed using hematoxylin-eosin (HE) staining. The expression of RAGE, AGE, protein kinase C (PKC), and collagen (COL) in the sciatic nerve was assessed by immunohistochemistry. The mRNA expression of RAGE, PKC, Toll-like receptor (TLR), COL, and GLO-1 was detected using real-time quantitative PCR (Real-time PCR). Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), urea (UREA), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-α were measured by enzyme-linked immunosorbent assay (ELISA). ResultsCompared with the normal group, the model group showed significantly increased fasting blood glucose (P<0.01), decreased body weight and mechanical pain threshold (P<0.01), and elevated serum AST, ALT, CREA, UREA, IL-6, and TNF-α levels (P<0.01). The expression of RAGE, AGE, and PKC in the sciatic nerve was significantly increased (P<0.01), while COL expression was decreased (P<0.01). The mRNA expression of TLR, RAGE, and PKC was upregulated (P<0.01), whereas COL and GLO-1 mRNA levels were downregulated (P<0.01). Histological examination showed irregular nerve morphology, axonal alterations, and myelin degeneration. Compared with the model group, fasting blood glucose levels in the Tangbikang dry paste high-dose group at all time points and in the medium-dose group at weeks 4 and 16 were significantly reduced (P<0.05, P<0.01). No significant changes in body weight were observed across all Tangbikang dose groups. The mechanical pain threshold was elevated at different time points after administration in all Tangbikang groups (P<0.05, P<0.01). Serum IL-6 and TNF-α levels were decreased in all dose groups (P<0.05, P<0.01). The expression of RAGE, AGE, and PKC in the sciatic nerve was reduced (P<0.01), while COL expression was increased (P<0.01). The mRNA expression of TLR, RAGE, and PKC was downregulated (P<0.01), whereas GLO-1 mRNA expression was upregulated (P<0.05, P<0.01). Additionally, COL mRNA expression was significantly increased in the low- and high-dose groups (P<0.01). Pathological changes in the sciatic nerve were milder in all Tangbikang groups compared to the model group. ConclusionTangbikang dry paste significantly improves DPN, and its mechanism may be associated with the regulation of the GLO-1/AGE/RAGE signaling pathway.
4.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
5.Traditional Chinese Medicine Intervention in Diabetic Nephropathy Based on PI3K/Akt Signaling Pathway: A Review
Miao XU ; Xiaolei JIA ; Lingling QIN ; Haiyan WANG ; You WANG ; Yuzhuo CHANG ; Cuiyan LYU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):90-97
Diabetic nephropathy (DN) is a renal disorder induced by prolonged hyperglycemia, with major pathological features including persistent albuminuria, progressive decline in glomerular filtration rate, and elevated arterial blood pressure. As one of the most common and severe microvascular complications of diabetes, the pathogenesis of DN is complex and multifactorial. Without timely and effective treatment, DN may eventually progress to end-stage renal disease (ESRD). Currently available therapeutic options are often associated with significant adverse effects and high costs, and a large number of patients still progress to ESRD due to delayed treatment. Therefore, there is an urgent need for safer and more effective treatment strategies to improve the living standards and enhance the survival and quality of life of patients with DN. Modern studies have demonstrated that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway plays a critical role in oxidative stress, inflammatory responses, autophagy, and glycolysis, and is closely associated with the pathophysiological progression of DN. In recent years, traditional Chinese medicine (TCM) has achieved remarkable progress in the prevention and treatment of DN, supported by rich clinical experience and confirmed therapeutic efficacy. With its characteristics of multi-target, multi-component, and multi-pathway actions, along with minimal side effects, TCM can delay the progression of DN and alleviate patient symptoms. Among these mechanisms, the regulation of the PI3K/Akt signaling pathway has gradually become a research hotspot. This paper systematically reviews the role and mechanisms of the PI3K/Akt signaling pathway in the onset and progression of DN based on extensive literature research, summarizes the latest research advances on the precise modulation of the PI3K/Akt pathway by Chinese medicine monomers, active constituents, Chinese patent medicines, and herbal compound formulas in the treatment of DN, aiming to provide a strong theoretical reference for the development of clinically effective agents for DN prevention and treatment.
6.Mechanism of Tangbikang Dry Paste in Prevention and Treatment of Type 2 Diabetic Peripheral Neuropathy Based on GLO-1/AGE/RAGE Pathway
Lijia WU ; Chengfei ZHANG ; Xiaolei JIA ; Lingling QIN ; Haiyan WANG ; Yukun HUANG ; You WANG ; Xincui BAO ; Jing YANG ; Cuiyan LYU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):60-69
ObjectiveTo investigate the mechanism of Tangbikang dry paste in the prevention and treatment of type 2 diabetic peripheral neuropathy (DPN) based on the glyoxalase-1 (GLO-1)/advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) pathway. MethodsA total of 56 Sprague-Dawley rats were randomly divided, with eight assigned to the normal group. The remaining 48 rats were fed a high-fat diet combined with intraperitoneal injection of streptozotocin (STZ) to induce a type 2 diabetes mellitus (T2DM) model. Based on blood glucose levels, the rats were randomly assigned to the model group, Tanglin group (13.5 mg·kg-1), metformin group (135 mg·kg-1), and Tangbikang dry paste low-, medium-, and high-dose groups (3, 6, 12 g·kg-1). Successful modeling of DPN was confirmed by a decrease in mechanical pain threshold in the model group at week 4. Fasting blood glucose, body weight, and mechanical pain threshold were measured every 4 weeks. After 16 weeks of intervention, the pathological morphology of the sciatic nerve was observed using hematoxylin-eosin (HE) staining. The expression of RAGE, AGE, protein kinase C (PKC), and collagen (COL) in the sciatic nerve was assessed by immunohistochemistry. The mRNA expression of RAGE, PKC, Toll-like receptor (TLR), COL, and GLO-1 was detected using real-time quantitative PCR (Real-time PCR). Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), urea (UREA), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-α were measured by enzyme-linked immunosorbent assay (ELISA). ResultsCompared with the normal group, the model group showed significantly increased fasting blood glucose (P<0.01), decreased body weight and mechanical pain threshold (P<0.01), and elevated serum AST, ALT, CREA, UREA, IL-6, and TNF-α levels (P<0.01). The expression of RAGE, AGE, and PKC in the sciatic nerve was significantly increased (P<0.01), while COL expression was decreased (P<0.01). The mRNA expression of TLR, RAGE, and PKC was upregulated (P<0.01), whereas COL and GLO-1 mRNA levels were downregulated (P<0.01). Histological examination showed irregular nerve morphology, axonal alterations, and myelin degeneration. Compared with the model group, fasting blood glucose levels in the Tangbikang dry paste high-dose group at all time points and in the medium-dose group at weeks 4 and 16 were significantly reduced (P<0.05, P<0.01). No significant changes in body weight were observed across all Tangbikang dose groups. The mechanical pain threshold was elevated at different time points after administration in all Tangbikang groups (P<0.05, P<0.01). Serum IL-6 and TNF-α levels were decreased in all dose groups (P<0.05, P<0.01). The expression of RAGE, AGE, and PKC in the sciatic nerve was reduced (P<0.01), while COL expression was increased (P<0.01). The mRNA expression of TLR, RAGE, and PKC was downregulated (P<0.01), whereas GLO-1 mRNA expression was upregulated (P<0.05, P<0.01). Additionally, COL mRNA expression was significantly increased in the low- and high-dose groups (P<0.01). Pathological changes in the sciatic nerve were milder in all Tangbikang groups compared to the model group. ConclusionTangbikang dry paste significantly improves DPN, and its mechanism may be associated with the regulation of the GLO-1/AGE/RAGE signaling pathway.
7.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
8.Traditional Chinese Medicine Intervention in Diabetic Nephropathy Based on PI3K/Akt Signaling Pathway: A Review
Miao XU ; Xiaolei JIA ; Lingling QIN ; Haiyan WANG ; You WANG ; Yuzhuo CHANG ; Cuiyan LYU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):90-97
Diabetic nephropathy (DN) is a renal disorder induced by prolonged hyperglycemia, with major pathological features including persistent albuminuria, progressive decline in glomerular filtration rate, and elevated arterial blood pressure. As one of the most common and severe microvascular complications of diabetes, the pathogenesis of DN is complex and multifactorial. Without timely and effective treatment, DN may eventually progress to end-stage renal disease (ESRD). Currently available therapeutic options are often associated with significant adverse effects and high costs, and a large number of patients still progress to ESRD due to delayed treatment. Therefore, there is an urgent need for safer and more effective treatment strategies to improve the living standards and enhance the survival and quality of life of patients with DN. Modern studies have demonstrated that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway plays a critical role in oxidative stress, inflammatory responses, autophagy, and glycolysis, and is closely associated with the pathophysiological progression of DN. In recent years, traditional Chinese medicine (TCM) has achieved remarkable progress in the prevention and treatment of DN, supported by rich clinical experience and confirmed therapeutic efficacy. With its characteristics of multi-target, multi-component, and multi-pathway actions, along with minimal side effects, TCM can delay the progression of DN and alleviate patient symptoms. Among these mechanisms, the regulation of the PI3K/Akt signaling pathway has gradually become a research hotspot. This paper systematically reviews the role and mechanisms of the PI3K/Akt signaling pathway in the onset and progression of DN based on extensive literature research, summarizes the latest research advances on the precise modulation of the PI3K/Akt pathway by Chinese medicine monomers, active constituents, Chinese patent medicines, and herbal compound formulas in the treatment of DN, aiming to provide a strong theoretical reference for the development of clinically effective agents for DN prevention and treatment.
9.History, Experience, Opportunities, and Challenges in Esophageal Cancer Prevention and Treatment in Linxian, Henan Province, A High Incidence Area for Esophageal Cancer
Lidong WANG ; Xiaoqian ZHANG ; Xin SONG ; Xueke ZHAO ; Duo YOU ; Lingling LEI ; Ruihua XU ; Jin HUANG ; Wenli HAN ; Ran WANG ; Qide BAO ; Aifang JI ; Lei MA ; Shegan GAO
Cancer Research on Prevention and Treatment 2025;52(4):251-255
Linxian County in Henan Province, Northern China is known as the region with the highest incidence and mortality rate of esophageal cancer worldwide. Since 1959, the Henan medical team has conducted field work on esophageal cancer prevention and treatment in Linxian. Through three generations of effort exerted by oncologists over 65 years of research on esophageal cancer prevention and treatment in Linxian, the incidence rate of esophageal squamous cell carcinoma in this area has dropped by nearly 50%, and the 5-year survival rate has increased to 40%, reaching the international leading
10.Effect of CCNA2 on Prognosis of Colon Cancer by Regulating Immune Microenvironment of Tumor Cells
Peng YANG ; Ziyi QIU ; Lingling WANG ; Yuan HU ; Zhengzhen CHEN ; Meizhen ZHONG ; Feiyue YU ; Rongyuan QIU
Cancer Research on Prevention and Treatment 2025;52(4):305-312
Objective To investigate the relationship between cyclin A2 (CCNA2) and the prognosis of colon cancer, and its possible mechanism from the perspective of immune infiltration. Methods We downloaded the transcriptome data of colon cancer patients from The Cancer Genome Atlas database. Clinicopathological feature analysis and survival analysis were performed based on the expression levels of CCNA2. A total of 75 specimens of colon cancer and normal tissues were collected, and the expression level of CCNA2 was analyzed using immunohistochemical methods. Multivariate analysis was conducted to explore its relationship with clinicopathological features. Gene Set Enrichment Analysis (GSEA) was used to assess the potential molecular functions of CCNA2 in colon cancer. CIBERSORT algorithm was applied to calculate the correlation between CCNA2 and immune-cell infiltration in colon cancer. Results Database and immunohistochemical analyses indicated that CCNA2 was expressed at a significantly higher level in colon cancer tissues than normal tissues (P<0.001). The overall survival, disease-specific survival, and progression-free interval were all longer in the group with high CCNA2 expression than the group with low expression (all P<0.05). In tumor tissues, the expression level of CCNA2 decreased with increased pathological and TNM stages (P<0.05). The expression level of CCNA2 in normal tissues was consistently lower than that in colon cancer tissues across all clinical stages (all P<0.001). GSEA suggested that Wnt/β-catenin, KRAS, and other signaling pathways were enriched when CCNA2 was lowly expressed. CIBERSORT analysis revealed an increase in the infiltration of immune cells such as regulatory T cells and macrophages M0 when CCNA2 expression was low. Conclusion CCNA2 is highly expressed in colon cancer and closely associated with grade of pathology and TNM stage. It may recruit regulatory T cells through the KRAS and Wnt/β-catenin pathways, thereby reducing immune-cell infiltration and promoting colon cancer progression, leading to poor prognosis.

Result Analysis
Print
Save
E-mail