1.Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner.
Jinghui LEI ; Xiaoyu JIANG ; Daoyuan HUANG ; Ying JING ; Shanshan YANG ; Lingling GENG ; Yupeng YAN ; Fangshuo ZHENG ; Fang CHENG ; Weiqi ZHANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Si WANG ; Jing QU
Protein & Cell 2024;15(1):36-51
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Endothelial Cells/metabolism*
;
Transcription Factors/metabolism*
;
Gene Expression Regulation
;
Hypoxia/metabolism*
;
Cell Hypoxia/physiology*
2.Research progress of artesunate nanoliposomes inhibiting VEGF and its receptor in hepatocellular carcinoma
Chunxia ZHAO ; Lingling WANG ; Xiao WEI ; Si LI ; Xiong ZHANG
Chongqing Medicine 2024;53(9):1397-1400
Vascular endothelial growth factor and its receptor play a very important regulatory role in the growth of liver tumors.In this paper,the pharmacological effects of artesunate nanoliposomes,the mecha-nism of artesunate nanoliposomes inhibiting tumor angiogenesis of liver cancer and the new targets of anti-cancer effects of drugs were discussed in order to provide new strategies for the treatment of liver cancer.
3.Single-cell profiling reveals a potent role of quercetin in promoting hair regeneration.
Qian ZHAO ; Yandong ZHENG ; Dongxin ZHAO ; Liyun ZHAO ; Lingling GENG ; Shuai MA ; Yusheng CAI ; Chengyu LIU ; Yupeng YAN ; Juan Carlos Izpisua BELMONTE ; Si WANG ; Weiqi ZHANG ; Guang-Hui LIU ; Jing QU
Protein & Cell 2023;14(6):398-415
Hair loss affects millions of people at some time in their life, and safe and efficient treatments for hair loss are a significant unmet medical need. We report that topical delivery of quercetin (Que) stimulates resting hair follicles to grow with rapid follicular keratinocyte proliferation and replenishes perifollicular microvasculature in mice. We construct dynamic single-cell transcriptome landscape over the course of hair regrowth and find that Que treatment stimulates the differentiation trajectory in the hair follicles and induces an angiogenic signature in dermal endothelial cells by activating HIF-1α in endothelial cells. Skin administration of a HIF-1α agonist partially recapitulates the pro-angiogenesis and hair-growing effects of Que. Together, these findings provide a molecular understanding for the efficacy of Que in hair regrowth, which underscores the translational potential of targeting the hair follicle niche as a strategy for regenerative medicine, and suggest a route of pharmacological intervention that may promote hair regrowth.
Mice
;
Animals
;
Quercetin/pharmacology*
;
Endothelial Cells
;
Hair
;
Hair Follicle
;
Alopecia
4.Large-scale chemical screen identifies Gallic acid as a geroprotector for human stem cells.
Hezhen SHAN ; Lingling GENG ; Xiaoyu JIANG ; Moshi SONG ; Jianxun WANG ; Zunpeng LIU ; Xiao ZHUO ; Zeming WU ; Jianli HU ; Zhejun JI ; Si WANG ; Piu CHAN ; Jing QU ; Weiqi ZHANG ; Guang-Hui LIU
Protein & Cell 2022;13(7):532-539
5.Low-dose chloroquine treatment extends the lifespan of aged rats.
Wei LI ; Zhiran ZOU ; Yusheng CAI ; Kuan YANG ; Si WANG ; Zunpeng LIU ; Lingling GENG ; Qun CHU ; Zhejun JI ; Piu CHAN ; Guang-Hui LIU ; Moshi SONG ; Jing QU ; Weiqi ZHANG
Protein & Cell 2022;13(6):454-461
6.Correction to: Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction.
Si WANG ; Zheying MIN ; Qianzhao JI ; Lingling GENG ; Yao SU ; Zunpeng LIU ; Huifang HU ; Lixia WANG ; Weiqi ZHANG ; Keiichiro SUZUIKI ; Yu HUANG ; Puyao ZHANG ; Tie-Shan TANG ; Jing QU ; Yang YU ; Guang-Hui LIU ; Jie QIAO
Protein & Cell 2022;13(8):623-625
7.mTORC2/RICTOR exerts differential levels of metabolic control in human embryonic, mesenchymal and neural stem cells.
Qun CHU ; Feifei LIU ; Yifang HE ; Xiaoyu JIANG ; Yusheng CAI ; Zeming WU ; Kaowen YAN ; Lingling GENG ; Yichen ZHANG ; Huyi FENG ; Kaixin ZHOU ; Si WANG ; Weiqi ZHANG ; Guang-Hui LIU ; Shuai MA ; Jing QU ; Moshi SONG
Protein & Cell 2022;13(9):676-682
8.Correction to: mTORC2/RICTOR exerts differential levels of metabolic control in human embryonic, mesenchymal and neural stem cells.
Qun CHU ; Feifei LIU ; Yifang HE ; Xiaoyu JIANG ; Yusheng CAI ; Zeming WU ; Kaowen YAN ; Lingling GENG ; Yichen ZHANG ; Huyi FENG ; Kaixin ZHOU ; Si WANG ; Weiqi ZHANG ; Guang-Hui LIU ; Shuai MA ; Jing QU ; Moshi SONG
Protein & Cell 2022;13(12):961-961
9.Low-dose quercetin positively regulates mouse healthspan.
Lingling GENG ; Zunpeng LIU ; Si WANG ; Shuhui SUN ; Shuai MA ; Xiaoqian LIU ; Piu CHAN ; Liang SUN ; Moshi SONG ; Weiqi ZHANG ; Guang-Hui LIU ; Jing QU
Protein & Cell 2019;10(10):770-775
10.Effects of acacetin on T47D cell proliferation
Lingling SI ; Jun MA ; Huanhuan REN ; Boxue REN ; Defang LI ; Qiusheng ZHENG
Chinese Pharmacological Bulletin 2017;33(2):260-267
Aim To investigate the effect of acacetin on cell proliferation and the influence of acacetin on estrogen receptor expression in vitro.Methods The proliferation rates and the cell cycle changes of acace-tin-treated T47D cells were measured by sulforhodam-ine B(SRB)assay and flow cytometry,respectively. Moreover,the mRNA expressions of estrogen receptor-alpha(ERα),estrogen receptor-beta(ERβ)and pro-liferating antigen(Ki67)were determined by quantita-tive real time PCR (qPCR).Western blot was em-ployed to detect the ERαand ERβprotein expression. Results Acacetin significantly promoted the prolifera-tion and increased the amount of cells arrested in S and G2 /M phase under the concentration of 0.001 ~1 0μmol·L -1 .Ki67 mRNA level and the ERαprotein level in T47D cells were remarkably upregulated after acacetin treatment.To clarify which estrogen receptors played a role in acacetin induced the proliferation of T47D cells,the combination treatment of acacetin and ERαinhibitor (MPP)/ERβ inhibitor (PHTPP) was employed.We found that MPP could reverse the cell proliferation,the cell arrested in S and G2 /M phase and the increased Ki67 mRNA level induced by acace-tin.PHTPP also alleviated the T47D cell proliferation induced by acacetin,whereas no significant changes were found in cell cycle and Ki67 mRNA level.Con-clusion Acacetin stimulates the cell proliferation of T47D cells in the concentration from 0.001 μmol · L -1 to 1 0 μmol·L -1 ,which is mainly mediated by ERα.

Result Analysis
Print
Save
E-mail