1.Influencing factors of intraoperative blood transfusion and prognosis in lung transplant patients
Huaying YANG ; Xinchen QIANG ; Lingling SUN ; Junliang SHAO
Chinese Journal of Blood Transfusion 2025;38(6):772-776
		                        		
		                        			
		                        			Objective: To explore the risk factors of allogeneic blood transfusion during lung transplant surgery and prognostic effects of transfusion by analyzing the basic data, surgical details, laboratory tests results, and intraoperative blood transfusion details during the perioperative period of lung transplant, so as to guide clinical blood use. Methods: A retrospective analysis was conducted on the data of 319 patients who underwent lung transplantation surgery in our hospital from January 2022 to December 2023. The patients were divided into a non-transfusion group (n=70) and a transfusion group (n=249) based on their intraoperative blood transfusion status. The clinical data, surgical details, perioperative laboratory results and other relevant preoperative and postoperative parameters were compared between the two groups, and the postoperative prognosis (improvement, non-recovery, and death) was analyzed. Results: After comparison between the two groups of patients, it was found that the non-transfusion group had higher levels of preoperative Hb (g/L)(144.41±17.66 vs 129.78±20.44), preoperative Hct [43.25(40.23, 47.5) vs 40.7(37, 43.55)], preoperative TBIL (μmol/L)[11.45(9.15, 15.3)vs 9.9(6.88, 13.33)], and postoperative PLT (×10
      /L)(167.74±64.43 vs 132.37±54.84) than the transfusion group (all P<0.05). The non-transfusion group had lower levels of preoperative pCO
      (mmHg)[41.4(37.4, 45.8)vs 45.3(40, 52.48)], postoperative TBIL (μmol/L)[25.45(17.68, 33.95)vs 30.8(21.55, 43.05)], postoperative pH (7.41±0.09 vs 7.45±0.10), bilateral lung transplantation [27(38.6%) vs 157(63.1%)], surgical duration (h) [5(4, 7)vs 6.5(5, 8)], use of ECMO [52(74.3%) vs 232(93.2%)], and intraoperative blood loss (mL)[600(500, 800)vs 1 000(800, 1 500)] compared to the transfusion group (all P<0.05). The items with P<0.1 in the compared indicators were included in the binary logistic regression analysis, and the results showed that bilateral lung transplantation, intraoperative blood loss, preoperative TBIL, postoperative PLT, postoperative TBIL, preoperative pCO2, and postoperative pH were significantly correlated with whether blood transfusion was performed (P<0.05). The P values of the Chi-square test for postoperative improvement and mortality in the non transfusion group and transfusion group were both greater than 0.05, indicating no statistically significant difference in the prognosis rate between the two groups of patients. Conclusion: Bilateral lung transplantation, intraoperative blood loss, preoperative TBIL, and preoperative pCO
       are risk factors for blood transfusion during lung transplantation. Intraoperative blood transfusion has a significant impact on postoperative PLT, postoperative TBIL, and postoperative pH indicators, but has no significant effect on prognosis. A comprehensive evaluation of laboratory indicators and surgical details can help developing blood transfusion strategies more effectively.
    
		                        		
		                        		
		                        		
		                        	
2.Research progress of HGF/c-Met signaling pathway in oral squamous cell carcinoma
SHI Jiafan ; GONG Lingling ; SUN Mingze ; LIU Lulu ; ZHANG Huilin ; LI Ming
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):709-718
		                        		
		                        			
		                        			Oral squamous cell carcinoma (OSCC) is a malignant tumor that seriously threatens human health. Its typical biological characteristics include strong local invasiveness, high lymph node metastasis rate, and high recurrence rate after treatment. Hepatocyte growth factor (HGF), cellular-mesenchymal to epithelial transition factor (c-Met), and the HGF/c-Met signaling pathway are involved in the regulation of the occurrence and development of OSCC. HGF and c-Met proteins are overexpressed in OSCC, and multiple studies have suggested that they are significantly associated with the malignant characteristics of tumors and poor prognosis. Furthermore, the abnormal activation of the HGF/c-Met signaling pathway (driven by HGF-dependent autocrine/paracrine or non-dependent mechanisms such as MET gene mutations, amplification, fusion, and protein overexpression) can synergistically promote tumor cell invasion, metastasis, and angiogenesis by activating downstream signaling pathways. However, HGF/c-Met can also mediate immune escape by promoting lactate secretion increase, inducing programmed death ligand 1 (PD-L1) expression upregulation, activating and expanding myeloid-derived suppressor cells, and promoting the proliferation of regulatory T cells (Tregs). In addition, the crosstalk between the HGF/c-Met signaling pathway and key pathways such as phosphatidylinositide 3-kinases (PI3K)/protein kinase B (AKT), epidermal growth factor receptor (EGFR), Janus kinase (JAK)/signal transducer and activator of transcription (STAT3), and non-coding RNAs can also promote tumor progression. Currently, three types of targeted drugs have been developed targeting the HGF/c-Met pathway: HGF monoclonal antibody, c-Met monoclonal antibody, and tyrosine kinase inhibitors. Some of these drugs have entered clinical trials. However, the emergence of drug resistance during treatment, especially the bidirectional compensatory activation of alternative signaling pathways such as EGFR, has become a major challenge in clinical practice. This article aims to provide an in-depth analysis of the mechanism of action of the HGF/c-Met pathway in OSCC and its interaction with other pathways, and to review the current research status of existing therapeutic drugs. The aim is to provide an important theoretical basis for developing more effective combined treatment strategies and achieving individualized precise treatment, ultimately improving the clinical prognosis and quality of life of patients.
		                        		
		                        		
		                        		
		                        	
3.Meta analysis of maternal overweight/obesity during pregnancy and offspring metabolic dysfunction associated steatotic liver disease
WU Yuying, ENKAER Nuer, WANG Youxin, WANG Mingyue, YANG Yifan, YANG Shuhan, SUN Lingling, WANG Hui
Chinese Journal of School Health 2025;46(8):1079-1083
		                        		
		                        			Objective:
		                        			To evaluates the association between maternal overweight/obesity during pregnancy and offspring risk of metabolic dysfunction associated steatotic liver disease (MASLD), providing theoretical evidence for early life MASLD prevention. 
		                        		
		                        			Methods:
		                        			An online search was conducted across ten databases (CNKI, Wanfang, SinoMed, PubMed, Embase, Web of Science, Cochrane Library, PROSPERO, PQDT Global, ScienceDirect) for research literature on the association between maternal overweight/obesity during pregnancy and the development of MASLD in offspring, with the search period spanning from January 2014 to December 2024. Two researchers independently screened literature, extracted data, and assessed study quality. Statistical analysis was performed using R 4.3.3.
		                        		
		                        			Results:
		                        			Ten studies involving 10 229 participants were included, comprising 4 cohort studies and 6 case control studies. Cohort studies showed that maternal overweight and obesity significantly increased offspring MASLD risk ( RR=1.59, 95%CI=1.06-2.39, P <0.05), with moderate heterogeneity ( I 2=56.9%, P =0.07). Case control studies indicated a positive association between maternal overweight/obesity during pregnancy and offspring risk of MASLD( OR=2.00, 95%CI=1.68-2.39,  P < 0.05), with low heterogeneity ( I 2=48.8%, P =0.08).
		                        		
		                        			Conclusions
		                        			Maternal overweight/obesity during pregnancy positively correlates with offspring MASLD risk. Gestational weight management may reduce the risk.
		                        		
		                        		
		                        		
		                        	
4.Analysis of the Correlation between Plasma Fibrinogen and Osteoporosis Defined by Quantitative Computed Tomography
Yingna CHEN ; Kan SUN ; Na LI ; Chengzhi WANG ; Chulin HUANG ; Lingling LI ; Huisheng XIAO ; Guojuan LAO
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):147-153
		                        		
		                        			
		                        			ObjectiveTo clarify the associations between plasma fibrinogen (Fbg) and volumetric bone mineral density (vBMD) as well as osteoporosis measured by quantitative computed tomography (QCT), and to explore the role of plasma Fbg in early screening and diagnosis of osteoporosis. MethodsPatients with hypertension who were hospitalized in the Department of Endocrinology of Sun Yat-sen Memorial Hospital of Sun Yat-sen University from January 2018 to June 2022 and underwent QCT examinations were included for cross-sectional analysis. The study analyzed the correlation between plasma Fbg and osteoporosis in patients. The diagnostic efficacy of plasma Fbg for osteoporosis was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). ResultsTotally 441 subjects were included in the analysis, with an average age of 46.0±14.5 years and a prevalence of osteoporosis of 6.4% (28/441). As the level of plasma fibrinogen increased, the incidence of osteoporosis significantly increased (P<0.000 1)while the average bone mineral density of L1 and L2 were significantly decreased (P<0.05). Compared with the first quartile of plasma Fbg(1.99g/L -2.37g/L), the risk of osteoporosis in the fourth quartile of plasma Fbg (3.67g/L-4.46g/L) increased by 8.85 times after adjusting for related confounding factors. ConclusionThis study found a negative correlation between plasma fibrinogen levels and bone density in patients with hypertension. Plasma fibrinogen levels may serve as a potential screening indicator for osteoporosis, aiding in early diagnosis and therapeutic monitoring. This discovery offers a new perspective for the study of bone metabolic diseases and warrants further investigation. 
		                        		
		                        		
		                        		
		                        	
5.Effect of Gynostemma pentaphyllum Alcohol Extract on Glucose and Lipid Metabolism Disorders in db/db Mice Based on Transcriptomics and Gut Microbiota
Yifei ZHU ; Lei DING ; Wei LIU ; Yahui SUN ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):80-89
		                        		
		                        			
		                        			ObjectiveTo investigate the efficacy and underlying mechanisms of Gynostemma pentaphyllum alcohol extract in improving glucose and lipid metabolism disorders in db/db mice through transcriptomics and gut microbiota analysis. MethodsEighteen db/db mice were randomly assigned to the model(DM) group, metformin(MET) group, and G. pentaphyllum alcohol extract(GP) group, with six mice in each group, based on stratification of fasting blood glucose and body weight. An additional six db/m mice were selected as the normal control(NC) group. Mice in the NC and DM groups were administered deionized water (10 mL·kg-1) daily. The MET group received metformin (0.195 g·kg-1) by gavage. The GP group was treated with G. pentaphyllum alcohol extract (3.9 g·kg-1) by gavage for six weeks. Fasting blood glucose was measured every two weeks. After six weeks of intervention, serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were assessed. Enzyme-linked immunosorbent assay (ELISA) was used to measure insulin (FINS), adiponectin (ADP), and tumor necrosis factor-α (TNF-α). Hematoxylin-eosin (HE) staining was used to observe liver histomorphology, periodic acid-Schiff (PAS) staining was employed to assess hepatic glycogen synthesis, and Oil Red O staining was used to detect hepatic lipid deposition. Liver transcriptomic data were used to identify differentially expressed genes in the liver and conduct enrichment analysis. Real-time PCR was employed to verify the expression levels of adiponectin gene (Adipoq), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), glucokinase (GCK), forkhead box (Fox)O1, FoxO3, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PC). Metagenomic sequencing was conducted to analyze changes in gut microbiota composition. ResultsCompared with the NC group, the DM group exhibited significantly elevated fasting blood glucose (P<0.01), serum AST, ALT, TC, TG, LDL-C, and HDL-C (P<0.01). FINS, homeostatic model assessment for insulin resistance (HOMA-IR), and the inflammatory cytokine TNF-α were significantly increased (P<0.01), while ADP was significantly decreased (P<0.05). Histological analysis confirmed severe hepatic steatosis and excessive lipid accumulation in the DM group, along with markedly reduced glycogen synthesis. Compared with the DM group, the GP group showed significantly decreased fasting blood glucose (P<0.01), reduced serum TC, LDL-C, and HDL-C levels (P<0.05), significantly decreased serum TG and AST levels (P<0.01), significantly reduced FINS, HOMA-IR, and TNF-α levels (P<0.01), and significantly increased ADP (P<0.01). Hepatic steatosis and lipid deposition were significantly alleviated, while glycogen synthesis was markedly enhanced. Transcriptomic differential and enrichment analyses suggested that the mechanisms by which G. pentaphyllum alcohol extract improved hepatic glucose and lipid metabolism in db/db mice may involve regulation of the AMPK and FoxO signaling pathways. Real-time PCR results confirmed that expression of PGC-1α, PEPCK, G6PC, FoxO1, and FoxO3 was significantly downregulated following treatment with G. pentaphyllum alcohol extract (P<0.05, P<0.01), whereas mRNA expression of Adipoq, PPARα, GCK, and AMPK was significantly upregulated (P<0.05, P<0.01). Metagenomic analysis showed that the relative abundance of Lactobacillus, Alistipes, and Akkermansia species was higher in the GP group than in the DM group. ConclusionG. pentaphyllum alcohol extract may improve glucose and lipid metabolism disorders in db/db mice by regulating the hepatic AMPK/PPARα pathway to suppress lipid deposition and alleviate hepatic steatosis, by inhibiting gluconeogenesis through the AMPK/PGC-1α and FoxO pathways to lower fasting blood glucose, and by increasing the abundance of beneficial gut bacteria such as Lactobacillus, Alistipes, and Akkermansia to restore gut microbiota balance. 
		                        		
		                        		
		                        		
		                        	
6.Effect of Gynostemma pentaphyllum Alcohol Extract on Glucose and Lipid Metabolism Disorders in db/db Mice Based on Transcriptomics and Gut Microbiota
Yifei ZHU ; Lei DING ; Wei LIU ; Yahui SUN ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):80-89
		                        		
		                        			
		                        			ObjectiveTo investigate the efficacy and underlying mechanisms of Gynostemma pentaphyllum alcohol extract in improving glucose and lipid metabolism disorders in db/db mice through transcriptomics and gut microbiota analysis. MethodsEighteen db/db mice were randomly assigned to the model(DM) group, metformin(MET) group, and G. pentaphyllum alcohol extract(GP) group, with six mice in each group, based on stratification of fasting blood glucose and body weight. An additional six db/m mice were selected as the normal control(NC) group. Mice in the NC and DM groups were administered deionized water (10 mL·kg-1) daily. The MET group received metformin (0.195 g·kg-1) by gavage. The GP group was treated with G. pentaphyllum alcohol extract (3.9 g·kg-1) by gavage for six weeks. Fasting blood glucose was measured every two weeks. After six weeks of intervention, serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were assessed. Enzyme-linked immunosorbent assay (ELISA) was used to measure insulin (FINS), adiponectin (ADP), and tumor necrosis factor-α (TNF-α). Hematoxylin-eosin (HE) staining was used to observe liver histomorphology, periodic acid-Schiff (PAS) staining was employed to assess hepatic glycogen synthesis, and Oil Red O staining was used to detect hepatic lipid deposition. Liver transcriptomic data were used to identify differentially expressed genes in the liver and conduct enrichment analysis. Real-time PCR was employed to verify the expression levels of adiponectin gene (Adipoq), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), glucokinase (GCK), forkhead box (Fox)O1, FoxO3, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PC). Metagenomic sequencing was conducted to analyze changes in gut microbiota composition. ResultsCompared with the NC group, the DM group exhibited significantly elevated fasting blood glucose (P<0.01), serum AST, ALT, TC, TG, LDL-C, and HDL-C (P<0.01). FINS, homeostatic model assessment for insulin resistance (HOMA-IR), and the inflammatory cytokine TNF-α were significantly increased (P<0.01), while ADP was significantly decreased (P<0.05). Histological analysis confirmed severe hepatic steatosis and excessive lipid accumulation in the DM group, along with markedly reduced glycogen synthesis. Compared with the DM group, the GP group showed significantly decreased fasting blood glucose (P<0.01), reduced serum TC, LDL-C, and HDL-C levels (P<0.05), significantly decreased serum TG and AST levels (P<0.01), significantly reduced FINS, HOMA-IR, and TNF-α levels (P<0.01), and significantly increased ADP (P<0.01). Hepatic steatosis and lipid deposition were significantly alleviated, while glycogen synthesis was markedly enhanced. Transcriptomic differential and enrichment analyses suggested that the mechanisms by which G. pentaphyllum alcohol extract improved hepatic glucose and lipid metabolism in db/db mice may involve regulation of the AMPK and FoxO signaling pathways. Real-time PCR results confirmed that expression of PGC-1α, PEPCK, G6PC, FoxO1, and FoxO3 was significantly downregulated following treatment with G. pentaphyllum alcohol extract (P<0.05, P<0.01), whereas mRNA expression of Adipoq, PPARα, GCK, and AMPK was significantly upregulated (P<0.05, P<0.01). Metagenomic analysis showed that the relative abundance of Lactobacillus, Alistipes, and Akkermansia species was higher in the GP group than in the DM group. ConclusionG. pentaphyllum alcohol extract may improve glucose and lipid metabolism disorders in db/db mice by regulating the hepatic AMPK/PPARα pathway to suppress lipid deposition and alleviate hepatic steatosis, by inhibiting gluconeogenesis through the AMPK/PGC-1α and FoxO pathways to lower fasting blood glucose, and by increasing the abundance of beneficial gut bacteria such as Lactobacillus, Alistipes, and Akkermansia to restore gut microbiota balance. 
		                        		
		                        		
		                        		
		                        	
7.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
		                        		
		                        			 Objective:
		                        			The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB). 
		                        		
		                        			Materials and Methods:
		                        			This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB. 
		                        		
		                        			Results:
		                        			In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%). 
		                        		
		                        			Conclusion
		                        			The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity. 
		                        		
		                        		
		                        		
		                        	
8.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
		                        		
		                        			 Objective:
		                        			The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB). 
		                        		
		                        			Materials and Methods:
		                        			This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB. 
		                        		
		                        			Results:
		                        			In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%). 
		                        		
		                        			Conclusion
		                        			The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity. 
		                        		
		                        		
		                        		
		                        	
9.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
		                        		
		                        			 Objective:
		                        			The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB). 
		                        		
		                        			Materials and Methods:
		                        			This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB. 
		                        		
		                        			Results:
		                        			In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%). 
		                        		
		                        			Conclusion
		                        			The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity. 
		                        		
		                        		
		                        		
		                        	
10.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
		                        		
		                        			 Objective:
		                        			The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB). 
		                        		
		                        			Materials and Methods:
		                        			This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB. 
		                        		
		                        			Results:
		                        			In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%). 
		                        		
		                        			Conclusion
		                        			The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity. 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail