1.Course of disease and related epidemiological parameters of COVID-19: a prospective study based on contact tracing cohort.
Yan ZHOU ; Wen Jia LIANG ; Zi Hui CHEN ; Tao LIU ; Tie SONG ; Shao Wei CHEN ; Ping WANG ; Jia Ling LI ; Yun Hua LAN ; Ming Ji CHENG ; Jin Xu HUANG ; Ji Wei NIU ; Jian Peng XIAO ; Jian Xiong HU ; Li Feng LIN ; Qiong HUANG ; Ai Ping DENG ; Xiao Hua TAN ; Min KANG ; Gui Min CHEN ; Mo Ran DONG ; Hao Jie ZHONG ; Wen Jun MA
Chinese Journal of Preventive Medicine 2022;56(4):474-478
Objective: To analyze the course of disease and epidemiological parameters of COVID-19 and provide evidence for making prevention and control strategies. Methods: To display the distribution of course of disease of the infectors who had close contacts with COVID-19 cases from January 1 to March 15, 2020 in Guangdong Provincial, the models of Lognormal, Weibull and gamma distribution were applied. A descriptive analysis was conducted on the basic characteristics and epidemiological parameters of course of disease. Results: In total, 515 of 11 580 close contacts were infected, with an attack rate about 4.4%, including 449 confirmed cases and 66 asymptomatic cases. Lognormal distribution was fitting best for latent period, incubation period, pre-symptomatic infection period of confirmed cases and infection period of asymptomatic cases; Gamma distribution was fitting best for infectious period and clinical symptom period of confirmed cases; Weibull distribution was fitting best for latent period of asymptomatic cases. The latent period, incubation period, pre-symptomatic infection period, infectious period and clinical symptoms period of confirmed cases were 4.50 (95%CI:3.86-5.13) days, 5.12 (95%CI:4.63-5.62) days, 0.87 (95%CI:0.67-1.07) days, 11.89 (95%CI:9.81-13.98) days and 22.00 (95%CI:21.24-22.77) days, respectively. The latent period and infectious period of asymptomatic cases were 8.88 (95%CI:6.89-10.86) days and 6.18 (95%CI:1.89-10.47) days, respectively. Conclusion: The estimated course of COVID-19 and related epidemiological parameters are similar to the existing data.
COVID-19
;
Cohort Studies
;
Contact Tracing
;
Humans
;
Incidence
;
Prospective Studies
2.Mechanism of pepsin promoting lingual tonsil hypertrophy by stimulating macrophage.
Li Jun HUANG ; Jia Jie TAN ; Ling Yi PENG ; Yuan Feng DAI ; Ze Hong LYU ; Xue Qiong HUANG ; Xiang Ping LI
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(10):1203-1211
Objective: To investigate the possible pathophysiological mechanism of laryngopharyngeal reflux (LPR) in the development of lingual tonsil hypertrophy (LTH). Methods: The lingual tonsil tissues were collected from 73 patients [48 males and 25 females, aged from 24 to 76 (52.86±12.04) years] who underwent surgery for laryngopharyngeal diseases at the Department of Otolaryngology and Head and Neck Surgery, Southern Hospital of Southern Medical University from October 2019 to December 2020, and the lingual tonsil grade (LTG), reflux symptom index (RSI) and reflux finding score (RFS) were assessed. The expression of pepsin in LTH was detected by immunohistochemistry. The coexpression of pepsin and macrophages were detected by immunohistofluorescence. In vitro, cytological experiments and pathway assays were performed on macrophages stimulated by pepsin. Pathway alterations of macrophages in pepsin-positive high-grade LTH were detected by double-fluorescence immunohistochemistry. Data were analyzed by SPSS 20.0 software. Results: There were 44 clinically significant LPRD patients with LTG 3 and 4, and the pepsin positive rate was 88.6% (39/44). While, the pepsin positive rate of LTG 1 and 2 was 48.3% (14/29). LTG was significantly positively correlated with RFS/RSI positive rate(χ2=23.01/19.62, P<0.001/0.001; r=0.54/0.51, P<0.001/0.001) and pepsin tissue staining intensity (H=21.58, P<0.001; r=0.53, P<0.001), respectively. Pepsin and macrophages were clearly colocalized in high grade LTH. In vitro, pepsin promoted macrophage proliferation (P<0.05) and production of IL-6/IL-8 (P<0.05). Pepsin significantly up-regulated the p38/JNK MAPK pathway in macrophages (P<0.05). Pepsin up-regulated the expression of IL-6 and IL-8 of macrophages by activating the p38 MAPK pathway (P<0.05), and up-regulated the expression of IL-8 by activating the JNK pathway (P<0.05). The p38/JNK MAPK pathways were highly expressed in macrophages of pepsin-positive LTH (P<0.05). Conclusions: LPR is an important pathogenic factor in LTH. Macrophages may mediate pepsin-induced inflammation and the pathogenesis of LTH.
Female
;
Male
;
Humans
;
Palatine Tonsil
;
Pepsin A
;
Interleukin-6
;
Interleukin-8
;
Hypertrophy
;
Macrophages
;
Laryngopharyngeal Reflux
3.A clinical epidemiological investigation of neonatal acute respiratory distress syndrome in southwest Hubei, China.
Yong-Fang ZHANG ; Xin-Qiao YU ; Jian-Hua LIAO ; Feng YANG ; Cong-Rong TAN ; Su-Ying WU ; Shi-Qing DENG ; Jun-Yuan FENG ; Jia-Yan HUANG ; Zuo-Fen YUAN ; Kai-Dian LIU ; Zhen-Ju HUANG ; Li-Fang ZHANG ; Zheng-Guo CHEN ; Hong XIA ; Lin-Lin LUO ; Yan HU ; Hua-Sheng WU ; Hong-Ling XIE ; Bao-Min FEI ; Qing-Wei PANG ; Song-Hua ZHANG ; Bi-Xia CHENG ; Lang JIANG ; Chang-Tao SHEN ; Qiong YI ; Xiao-Guang ZHOU
Chinese Journal of Contemporary Pediatrics 2020;22(9):942-947
OBJECTIVE:
To investigate the clinical features and outcome of neonatal acute respiratory distress syndrome (ARDS) in southwest Hubei, China.
METHODS:
According to the Montreux definition of neonatal ARDS, a retrospective clinical epidemiological investigation was performed on the medical data of neonates with ARDS who were admitted to Department of Neonatology/Pediatrics in 17 level 2 or level 3 hospitals in southwest Hubei from January to December, 2017.
RESULTS:
A total of 7 150 neonates were admitted to the 17 hospitals in southwest Hubei during 2017 and 66 (0.92%) were diagnosed with ARDS. Among the 66 neonates with ARDS, 23 (35%) had mild ARDS, 28 (42%) had moderate ARDS, and 15 (23%) had severe ARDS. The main primary diseases for neonatal ARDS were perinatal asphyxia in 23 neonates (35%), pneumonia in 18 neonates (27%), sepsis in 12 neonates (18%), and meconium aspiration syndrome in 10 neonates (15%). Among the 66 neonates with ARDS, 10 neonates (15%) were born to the mothers with an age of ≥35 years, 30 neonates (45%) suffered from intrauterine distress, 32 neonates (49%) had a 1-minute Apgar score of 0 to 7 points, 24 neonates (36%) had abnormal fetal heart monitoring results, and 21 neonates (32%) experienced meconium staining of amniotic fluid. Intraventricular hemorrhage was the most common comorbidity (12 neonates), followed by neonatal shock (9 neonates) and patent ductus arteriosus (8 neonates). All 66 neonates with ARDS were treated with mechanical ventilation in addition to the treatment for primary diseases. Among the 66 neonates with ARDS, 10 died, with a mortality rate of 15% (10/66), and 56 neonates were improved or cured, with a survival rate of 85% (56/66).
CONCLUSIONS
Neonatal ARDS in southwest Hubei is mostly mild or moderate. Perinatal asphyxia and infection may be the main causes of neonatal ARDS in this area. Intraventricular hemorrhage is the most common comorbidity. Neonates with ARDS tend to have a high survival rate after multimodality treatment.
China
;
Female
;
Humans
;
Infant, Newborn
;
Meconium Aspiration Syndrome
;
Pregnancy
;
Respiratory Distress Syndrome, Newborn
;
Retrospective Studies
4.Incidence of neonatal asphyxia and contributing factors for the develpment of severe asphyxia in Hubei Enshi Tujia and Miao Autonomous Prefecture: a multicenter study.
Su-Ying WU ; Fen PENG ; Ting DING ; Hong-Yan TAN ; Qian WU ; Xin-Qiao YU ; Zhi-Ping PAN ; Hong-Ling XIE ; Hong XIA ; Bao-Min FEI ; Kai-Dian LIU ; Zuo-Fen YUAN ; Cong-Rong TAN ; Lang JIANG ; Song-Hua ZHANG ; Qiong YI ; Wei-Hua WU ; Lin-Lin LUO ; Chang-Tao SHEN ; Jin-Fan ZHANG ; Zhen-Ju HUANG ; Shi-Wen XIA
Chinese Journal of Contemporary Pediatrics 2019;21(1):6-10
OBJECTIVE:
To investigate the incidence of neonatal asphyxia and possible contributing factors for the development of severe asphyxia in Hubei Enshi Tujia and Miao Autonomous Prefecture, China.
METHODS:
A total of 16 hospitals in Hubei Enshi Tujia and Miao Autonomous Prefecture were selected as research centers. A retrospective analysis was performed for the clinical data of 22 294 live births in these 16 hospitals from January to December, 2016 to investigate the incidence rate of neonatal asphyxia and possible contributing factors for the development of severe asphyxia.
RESULTS:
Of the 22 294 neonates born alive, 733 (3.29%) were diagnosed with neonatal asphyxia, among whom 627 had mild asphyxia and 106 had severe asphyxia. The neonates with low maternal education level, maternal anemia during pregnancy, chorioamnionitis, abnormal amniotic fluid, abnormal umbilical cord, placenta previa, placental abruption, Tujia Minority, preterm birth, and low birth weight had a higher incidence of severe asphyxia (P<0.05).
CONCLUSIONS
The incidence rate of neonatal asphyxia in Hubei Enshi Tujia and Miao Autonomous Prefecture is higher. Low maternal education level, maternal anemia during pregnancy, chorioamnionitis, abnormal amniotic fluid, abnormal umbilical cord, placenta previa, placental abruption, Tujia Minority, preterm birth, and low birth weight may be related to the development of severe neonatal asphyxia.
Asphyxia Neonatorum
;
epidemiology
;
China
;
Humans
;
Incidence
;
Infant, Newborn
;
Retrospective Studies
5.Prenylated stilbenes and flavonoids from the leaves of Cajanus cajan.
Gui-Yun WU ; Xiao ZHANG ; Xue-Ying GUO ; Lu-Qiong HUO ; Hong-Xin LIU ; Xiao-Ling SHEN ; Sheng-Xiang QIU ; Ying-Jie HU ; Hai-Bo TAN
Chinese Journal of Natural Medicines (English Ed.) 2019;17(5):381-386
Three new prenylated stilbenes, named as cajanusins A-C (1-3), and one new natural product cajanusin D (4), along with six known derivatives (5-10) were isolated from the leaves of Cajanus cajan. Their structures were fully elucidated by means of extensive spectroscopic methods and comparison with data in the reported literatures. The new compounds of 1 and 2 were evaluated for in vitro cytotoxic activities against a panel of human cancer cell lines.
6.Application of Doctor-nurse Integrative Medical Care in Analgesia at Home for Cancer Patients
Ling ZHOU ; Qiong ZHONG ; Min WANG ; Si TAN ; Yong-Xiu LIU
Journal of Kunming Medical University 2018;39(3):141-144
Objecctive To explore the construction and effect of the Doctor-nurse integrative medical care mode for domestic analgesia in middle and late stage cancer patients.Me thods From september 2016 to February 2017, 120 Cancer patients in The People's hospitalof Du Jiang Yan were included, and randomly divided into experimental group (n=60) and observation group (n=60). The observation group received routine outpatient follow-up after discharge.The experimental group was treated with the Doctor-nurse integrative medical care mode.The analgesic modes included psychological support, immediate morphine and morphine sustained release tablets for personalized home titration. The Net bottom-hospitals were responsible for the follow-up and intervention, the training and guidance were bore by Hub hospitals. The patients were followed up at the first and twelfth weeks, followed by telephone follow-up at fourth and eighthweek, after discharge. The quality of life, the degree of depression and the degree of anxiety of caregiver were compared between the two groups at the beginning of the study and the twelfth weeks after discharge. Re s ults In experimental group, the scores of in the life quality of patints before and after intervention were (62.43±12.83) and (50.33 ±9.04), respectively, the scores of depression before and after intervention were (50.33± 6.59) and (47.37±4.97), respectively, the scores of anxiety before and after intervention were (55.05 ±8.82) and (52.22 ±5.37). There was statistically significant difference between the two groups (P<0.05). Conclus ions Doctor-nurse integrative medical care mode can improve the quality of life of patients with advanced cancer, reduce the degree of depression, and reduce the degree of anxiety of patients.
7.Protective effect and mechanism of ginsenoside Rg1 on H2O2induced hippocampal neurons aging due to down-regulate NOX2 mediated NLRP1 inflammasome activation in vitro
Tan-Zhen XU ; Ya-Li CHEN ; Xiao-Yan SHEN ; Ling-Ling SUN ; Bi-Qiong ZHANG ; Da-Ke HUANG ; Wei-Zu LI
Chinese Journal of Pharmacology and Toxicology 2018;32(4):321-321
OBJECTIVE To explore the protective effects and mechanisms of Ginsenoside Rg1 (Rg1) on H2O2-induced hippocampal neurons aging in vitro. METHODS The primary culture hippo-campal neurons(7 d)were randomly placed into six groups:normal control group,H2O2(200 μM)treat-ment group,and H2O2+Rg1(1,5 and 10μM)groups.The neurons were with Rg1(1,5 and 10 μmol·L-1) for 6h. H2O2(200 μmol·L-1) was added to the medium and incubate for 18 h. The Dihydroethidium (DHE) staining was performed for ROS production assessment. The LDH release and Hoechst 33258 were performed to examine the neuronal damage and apoptosis. The immunoblot was used to deter-mine the expression of β-Gal,NOX2,p22phox,p47phox,NLRP-1,ASC and Caspase-1 in hippocampal neurons.The ELISA was performed to detect the levels of IL-1β and IL-18 released in the supernatant in hippocampal neurons.RESULTS Rg1(5 and 10 μmol·L-1)significantly reduced the ROS production, attenuated H2O2-induced neuronal damage and apoptosis (P<0.05, P<0.01). The immunoblot results showed that Rg1(5 and 10 μmol·L-1)treatment significantly decreased the expression of β-Gal,NOX2, p22phox,p47phox,NLRP-1,ASC and Caspase-1 in hippocampal neurons(P<0.05,P<0.01).Additionally, Rg1(5 and 10 μmol·L-1)treatment significantly decreased IL-1β and IL-18 release in the supernatant. CONCLUSION The protective effect of Rg1 in H2O2-induced hippocampal neurons aging may be due to inhibit NOX2-NLRP1 activation.
8.Long-term effect of environmental cadmium exposure on human body's mineral metabolic balance
Haituan LING ; Rui HUANG ; Xuxia LIANG ; Zhixue LI ; Jing WANG ; Jianbin TAN ; Shixuan WU ; Ping WANG ; Zihui CHEN ; Qiong HUANG ; Yingjian LYU ; Qi JIANG ; Xingfen YANG ; Yongning WU
Chinese Journal of Preventive Medicine 2016;50(4):316-321
Objective To investigate the effect of long?term exposure to environmental cadmium on eight mineral element's metabolic balance of human body. Methods To choose a high cadmium area polluted by smelting and mining north of Guangdong province and a cadmium?free area with a similar economic level, and living and eating habit of residents as a contrast from April 2011 to August 2012. Stratified random sampling and clustered sampling method were adopted to choose the non?occupationally cadmium?exposed respondents who have lived in local area for more than 15 years, older than 40 years, having local rice and vegetable as the main dietary source, with simple and relatively stable diet, and without diabetes, kidney disease, thyroid disease, liver disease or other history of chronic disease. This study included 298 respondents, of whom 155 were in cadmium exposure group and 143 in control group. Questionnaires was used to acquire their health status and their morning urine samples were collected. Electrolytically coupled plasma mass spectrometry (ICP?MS) was used to test the concentrations of sodium (Na), magnesium (Mg), phosphorus (P), potassium (K), calcium (Ca), copper (Cu), zinc (Zn) and iodine (I). The Mann?Whitney U test method was used to compare the differences of concentrations of urinary cadmium, Na, Mg, P, K, Ca, Cu, Zn, I, and the ratio of Na to K (Na/K), Ca to P (Ca/P) between exposed group and control group.χ2 test was used to compare the abnormal rate of urinary cadmium between exposed group and control group. Pearson correlation and multiple regression method were used to investigate the relationship between urinary cadmium levels, gender, age, smoking, passive smoking, and minerals. Results The urinary cadmium level P50 (P25-P75) in exposed group was 5.45 (2.62-10.68)μg/g·cr, which was higher than that of the control group, which was 1.69 (1.22-2.36)μg/g · cr (Z=-10.49, P<0.001). The abnormal rate of urinary cadmium was 51.6%(80/155), which was higher than that of the control group (2.8%(4/143)) (χ2=87.56,P<0.001). The urinary Ca, Cu, Zn, and I level P50 (P25-P75) of exposed group were 173.80 (114.40-251.70), 20.55 (14.95-28.44), 520.23 (390.25-647.15), and 246.94 (203.65-342.97)μg/g · cr, which were higher than those in control group (142.42 (96.87-179.11), 15.44 (12.26-20.98), 430.09 (309.85-568.78) and 213.85 (156.70-281.63) μg/g · cr, respectively) (Z values were-4.33,-5.04,-3.47 and-4.24, all P values<0.001). The urinary P, K level P50 (P25-P75) of exposed group were 582.50 (463.20-742.8), 890.10 (666.00-1 305.40) μg/g · cr, which were lower than control group (694.50 (546.20-851.17), 1 098.58 (904.53-1 479.18) μg/g · cr) (Z values were-3.36,-4.02, all P values <0.001). on Based the results of Pearson correlation analysis, urinary cadmium was positively correlated with urinary Ca, Cu, Zn, and I, and the correlation coefficients were 0.31, 0.61, 0.38, and 0.25, respectively(all P values<0.05). Based on the results of multiple regression analysis, urinary cadmium levels contributed most to the metabolic balance of urinary Ca, Cu, Zn and I. The standardized regression coefficients were 0.31, 0.59, 0.39, and 0.24, respectively (all P values<0.001). Conclusion Long?term environmental exposure to cadmium affected the metabolic balance of Ca, Cu, Zn and I in human body.
9.Cadmium burden and renal dysfunction among residents in cadmium-polluted areas:A 3-year ;follow-up study
Zhixue LI ; Ping WANG ; Rui HUANG ; Xuxia LIANG ; Zhongjun DUN ; Qi JIANG ; Qiong HUANG ; Haituan LING ; Jing WANG ; Jianbin TAN ; Shixuan WU ; Zihui CHEN ; Yanhong GAO ; Yingjian LYU ; Yongning WU ; Xingfen YANG
Chinese Journal of Preventive Medicine 2016;50(4):322-327
Objective To investigate dynamic change of cadmium body burden and renal dysfunction among residents living in cadmium?polluted areas. Methods From April to July of 2011, the cadmium?polluted areas of northern Guangdong province in China was chosen as the study site. Based on the levels of cadmium pollution in soil and rice, the survey areas were divided into low exposed group (average concentration of cadmium was 0.15-0.40 mg/kg, 0.5-1.0 mg/kg in rice and soil, respectively) and high exposed group (average concentration of cadmium was >0.40 mg/kg, >1.0 mg/kg in rice and soil, respectively). Stratified random sampling and cluster sampling method of epidemiological investigations were carried out among 414 local residents who lived in cadmium exposure areas for more than 15 years, aged above 40, and without occupational cadmium exposure, including 168 and 246 residents in low and high exposed group, respectively. From March to June of 2014, 305 respondents of those who participated in 2011 were successfully traced, including 116 and 189 respondents in low and high exposed group, respectively. We used health questionnaires to acquire their health status. Home?harvested rice and vegetable samples were collected using quartering method for detection of cadmium level, including 190 rice samples, 161 vegetable samples in 2011 and 190 rice samples, 153 vegetable samples in 2014. Urine specimens of residents were collected for the detection of urinary cadmium and creatinine as well as renal dysfunction biomarkers, namely, N?acetyl?beta?D?glucosamidase (NAG) andβ2?microglobulin (β2?MG), respectively. In 2011 and 2014, Chi?square test was used to investigate the differences of abnormality of cadmium concentration in rice, vegetables and urinary cadmium,β2?MG,and NAG that were expressed as odds ratio (OR) and 95%confidence intervals (95%CI). Results In 2011 and 2014, cadmium concentration P50 (P25-P75) in rice was 0.43 (0.17-1.10) mg/kg,and 0.42 (0.20-1.14) mg/kg, respectively (Z=-0.77, P=0.440). In 2011 and 2014, cadmium concentrations P50 (P25-P75) in vegetables were 0.13 (0.07-0.34) mg/kg,and 0.25 (0.12-0.59) mg/kg, respectively, with abnormal rates of 38.5%(62/161) and 60.8%(93/153), respectively. In 2014, both average concentration and abnormal rate of cadmium in vegetables were higher than those in 2011 (Z=-4.69,P<0.001 andχ2=15.58, P<0.001). Concentrations of urinary cadmium P50 (P25-P75) in high exposed group were 7.90 (3.96-14.91)μg/g creatinine, 8.64 (4.56-17.60)μg/g creatinine in 2011 and 2014, respectively. Contrary to that in 2011, urinary cadmium of high exposed group was significantly increased in 2014 (Z=-2.80 ,P=0.005). In 2011 and 2014, concentrations of β2?MG, NAG P50 (P25-P75) were 0.15 (0.07-0.29)μg/g creatinine, 0.15 (0.07-0.45)μg/g creatinine,and 7.12 (5.05-10.65) U/g creatinine, 13.55 (9.1-19.84) U/g creatinine, respectively, with abnormal rates of 7.5% (23/305), 15.1% (46/305) ,8.2%(25/305) , and 33.8% (103/305), respectively. Compared with baseline in 2011, average concentrations ofβ2?MG, NAG significantly increased in 2014 (Z=-2.263,P=0.024 and Z=-12.52,P<0.001), and abnormal rates ofβ2?MG, NAG were also higher in 2014 (χ2=15.61,P<0.001 andχ2=64.72,P<0.001), with odds ratio (OR) of 2.00 (95%CI:1.23-3.24) and 4.12 (95%CI:2.87-5.92). Conclusion Environmental cadmium pollution of crops such as rice and vegetables in survey areas continued to remain high. Body burden of cadmium might kept at sustainably high levels and renal dysfunction was worsened after continuous, long?term cadmium exposure. Our results suggested that NAG might be more sensitive than β2?MG to serve as an indicator for an individual's future tubular function.
10.Long-term effect of environmental cadmium exposure on human body's mineral metabolic balance
Haituan LING ; Rui HUANG ; Xuxia LIANG ; Zhixue LI ; Jing WANG ; Jianbin TAN ; Shixuan WU ; Ping WANG ; Zihui CHEN ; Qiong HUANG ; Yingjian LYU ; Qi JIANG ; Xingfen YANG ; Yongning WU
Chinese Journal of Preventive Medicine 2016;50(4):316-321
Objective To investigate the effect of long?term exposure to environmental cadmium on eight mineral element's metabolic balance of human body. Methods To choose a high cadmium area polluted by smelting and mining north of Guangdong province and a cadmium?free area with a similar economic level, and living and eating habit of residents as a contrast from April 2011 to August 2012. Stratified random sampling and clustered sampling method were adopted to choose the non?occupationally cadmium?exposed respondents who have lived in local area for more than 15 years, older than 40 years, having local rice and vegetable as the main dietary source, with simple and relatively stable diet, and without diabetes, kidney disease, thyroid disease, liver disease or other history of chronic disease. This study included 298 respondents, of whom 155 were in cadmium exposure group and 143 in control group. Questionnaires was used to acquire their health status and their morning urine samples were collected. Electrolytically coupled plasma mass spectrometry (ICP?MS) was used to test the concentrations of sodium (Na), magnesium (Mg), phosphorus (P), potassium (K), calcium (Ca), copper (Cu), zinc (Zn) and iodine (I). The Mann?Whitney U test method was used to compare the differences of concentrations of urinary cadmium, Na, Mg, P, K, Ca, Cu, Zn, I, and the ratio of Na to K (Na/K), Ca to P (Ca/P) between exposed group and control group.χ2 test was used to compare the abnormal rate of urinary cadmium between exposed group and control group. Pearson correlation and multiple regression method were used to investigate the relationship between urinary cadmium levels, gender, age, smoking, passive smoking, and minerals. Results The urinary cadmium level P50 (P25-P75) in exposed group was 5.45 (2.62-10.68)μg/g·cr, which was higher than that of the control group, which was 1.69 (1.22-2.36)μg/g · cr (Z=-10.49, P<0.001). The abnormal rate of urinary cadmium was 51.6%(80/155), which was higher than that of the control group (2.8%(4/143)) (χ2=87.56,P<0.001). The urinary Ca, Cu, Zn, and I level P50 (P25-P75) of exposed group were 173.80 (114.40-251.70), 20.55 (14.95-28.44), 520.23 (390.25-647.15), and 246.94 (203.65-342.97)μg/g · cr, which were higher than those in control group (142.42 (96.87-179.11), 15.44 (12.26-20.98), 430.09 (309.85-568.78) and 213.85 (156.70-281.63) μg/g · cr, respectively) (Z values were-4.33,-5.04,-3.47 and-4.24, all P values<0.001). The urinary P, K level P50 (P25-P75) of exposed group were 582.50 (463.20-742.8), 890.10 (666.00-1 305.40) μg/g · cr, which were lower than control group (694.50 (546.20-851.17), 1 098.58 (904.53-1 479.18) μg/g · cr) (Z values were-3.36,-4.02, all P values <0.001). on Based the results of Pearson correlation analysis, urinary cadmium was positively correlated with urinary Ca, Cu, Zn, and I, and the correlation coefficients were 0.31, 0.61, 0.38, and 0.25, respectively(all P values<0.05). Based on the results of multiple regression analysis, urinary cadmium levels contributed most to the metabolic balance of urinary Ca, Cu, Zn and I. The standardized regression coefficients were 0.31, 0.59, 0.39, and 0.24, respectively (all P values<0.001). Conclusion Long?term environmental exposure to cadmium affected the metabolic balance of Ca, Cu, Zn and I in human body.

Result Analysis
Print
Save
E-mail