1.Traditional Chinese Medicine Treats Acute Lung Injury by Modulating NLRP3 Inflammasome: A Review
Jiaojiao MENG ; Lei LIU ; Yuqi FU ; Hui SUN ; Guangli YAN ; Ling KONG ; Ying HAN ; Xijun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):292-301
Acute lung injury (ALI) is one of the most common and critical diseases in clinical practice, with extremely high morbidity and mortality, seriously threatening human life and health. The pathogenesis of ALI is complex, in which the inflammatory response is a key factor. Studies have shown that NOD-like receptor protein 3 (NLRP3) inflammasomes are involved in ALI through mechanisms such as inflammation induction, increased microvascular permeability, recruitment of neutrophils, oxidative stress, and pyroptosis, playing a key role in the occurrence and progression of ALI. Therefore, regulating NLRP3 inflammasomes and inhibiting the release of inflammatory factors can alleviate the damage in ALI. At present, ALI is mainly treated by mechanical ventilation and oxygen therapy, which have problems such as high costs and poor prognosis. In recent years, studies have shown that traditional Chinese medicine (TCM) can reduce the inflammatory response and the occurrence of oxidative stress and pyroptosis by regulating the NLRP3 inflammasome, thus alleviating the damage and decreasing the mortality of ALI. Based on the relevant literature in recent years, this article reviews the research progress in TCM treatment of ALI by regulating NLRP3 inflammasomes, discusses how NLRP3 inflammasomes participate in ALI, and summarizes the active ingredients, extracts, and compound prescriptions of TCM that regulate NLRP3 inflammasomes, aiming to provide new ideas for the clinical treatment of ALI and the development of relevant drugs.
2.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
3.Effect of targeted silencing of DNMT3A on collagen deposition, proliferation and migration activity of mouse lung fibroblasts
Xianchen Wang ; Junbo You ; Hui Ling ; Jiahao Fan ; Qi Chen ; Hui Tao ; Jiming Sha
Acta Universitatis Medicinalis Anhui 2025;60(1):66-72
Objective:
To investigate the effect of targeted silencing of DNA methyltransferase 3A(DNMT3A) on collagen deposition, proliferation and migration activity of mouse lung fibroblasts(PFs).
Methods:
In order to ensure the proliferation and migration activity of primary fibroblasts, the lung tissues of neonatal C57 suckling mice were taken, PFs were extracted after being sheared, and the morphology was observed and identified under the microscope. PFs cells were activated by 5 ng/ml TGF-β1for 24 h after cell attachment, and DNMT3A silencing model was constructed by small interfering RNA; The experiment was divided into control group, TGF-β1group, TGF-β1+ siRNA-NC group and TGF-β1+ siRNA-DNMT3A group. The protein expressions of DNMT3A, α-smooth muscle actin(α-SMA) and Collagen Ⅰ were detected by Western blot; Real time quantitative reverse transcription polymerase chain reaction(RT-qPCR) was used to detect the mRNA expression changes ofDNMT3A,α-SMAandCollagenⅠ. The proliferation ability of PFs was detected by CCK-8 and EdU staining; the migration ability of PFs was detected by scratch test and Transwell migration test.
Results:
Compared with the control group, TGF-β1induced the increase of DNMT3A in the activated PFs cell group(P<0.01), the protein and mRNA levels of fibrosis and proliferation related indicators α-SMA and Collagen Ⅰ also increased(allP<0.05), and the proliferation and migration ability of PFs increased(allP<0.000 1). Compared with the siRNA-NC group, the protein expression levels of DNMT3A(P<0.000 1) and related indicators α-SMA(P<0.01) and Collagen Ⅰ(P<0.01) significantly decreased in the DNMT3A silencing group by Western blot, and the mRNA levels ofDNMT3A,α-SMAandCollagenⅠby RT-qPCR also decreased(allP<0.001), and the proliferation(P<0.01) and migration ability(P<0.05) of PFs cells decreased compared with the control group.
Conclusion
Silencing DNMT3A can inhibit the deposition of collagen and the proliferation of PFs. DNMT3A can promote the proliferation and migration of PFs, and then promote the activation of PFs and the development of pulmonary fibrosis. This process may be regulated by DNA methylation modification.
4.Research progress on strategies to target intestinal microbiota to improve drug resistance in tumor immunotherapy
Hui-ling LI ; Bi-qing LIU ; Ying-nan FENG ; Xin HU ; Lan ZHANG ; Xian-zhe DONG
Acta Pharmaceutica Sinica 2025;60(2):260-268
A growing body of research points out that gut microbiota plays a key role in tumor immunotherapy. By optimizing the composition of intestinal microbiota, it is possible to effectively improve immunotherapy resistance and enhance its therapeutic effect. This article comprehensively analyzes the mechanism of intestinal microbiota influencing tumor immunotherapy resistance, expounds the current strategies for targeted regulation of intestinal microbiota, such as traditional Chinese medicine and plant components, fecal microbiota transplantation, probiotics, prebiotics and dietary therapy, and explores the potential mechanisms of these strategies to improve patients' resistance to tumor immunotherapy. At the same time, the article also briefly discusses the prospects and challenges of targeting intestinal microbiota to improve tumor immunotherapy resistance, which provides a reference for related research to help the strategy research of reversing tumor immunotherapy resistance.
5.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
6.Study on secondary metabolites of Penicillium expansum GY618 and their tyrosinase inhibitory activities
Fei-yu YIN ; Sheng LIANG ; Qian-heng ZHU ; Feng-hua YUAN ; Hao HUANG ; Hui-ling WEN
Acta Pharmaceutica Sinica 2025;60(2):427-433
Twelve compounds were isolated from the rice fermentation extracts of
7.Mechanism of Gegen Qinliantang in Regulating Microglia Polarization to Improve Diabetic Cognitive Impairment
Hui FENG ; Chunxiang ZHOU ; Tianyi REN ; Weiwei TAO ; Yun LING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):1-10
ObjectiveTo explore the protective effect and underlying mechanism of Gegen Qinliantang on cognitive function in db/db mice with diabetic cognitive impairment (DCI). MethodsThirty-two 8-week-old male db/db mice were randomly assigned to the model group, dapagliflozin group (1.0 mg·kg-1·d-1), low-dose Gegen Qinliantang group (6.24 g·kg-1·d-1), and high-dose Gegen Qinliantang group (24.96 g·kg-1·d-1). Eight db/m mice served as the normal group. All mice were administered the corresponding treatment once daily by gavage for 10 consecutive weeks. Body weight and fasting blood glucose (FBG) were dynamically monitored. The Morris water maze test was used to evaluate cognitive function. Hematoxylin-eosin (HE) staining and Nissl staining were used to observe pathological changes in the hippocampus. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in hippocampal tissue. Immunofluorescence double staining was used to detect the co-expression of M1 microglial marker CD16/32 and ionized calcium-binding adapter molecule 1 (IBA1) in the hippocampus. Western blot analysis was performed to detect the protein expression of postsynaptic density protein 95 (PSD-95), synapsin (SYN), nuclear factor-κB p65 (NF-κB p65), and phosphorylated NF-κB p65 (p-NF-κB p65) in the hippocampus. ResultsCompared with the normal group, the model group showed significantly increased body weight and FBG levels (P<0.01), significantly prolonged escape latency and reduced platform crossings in the Morris water maze test (P<0.01), disordered arrangement of hippocampal neurons, nuclear pyknosis, increased neuronal necrosis, reduced Nissl bodies, decreased expression of synaptic proteins PSD-95 and SYN (P<0.01), increased CD16/32+ /IBA1+ positive rate, elevated levels of TNF-α and IL-1β, and an increased p-NF-κB p65/NF-κB p65 ratio (P<0.01). Compared with the model group, the dapagliflozin group exhibited significantly reduced FBG levels at weeks 5 and 10 (P<0.05, P<0.01) and increased body weight. The high-dose Gegen Qinliantang group showed significantly reduced FBG at week 10 (P<0.05). Escape latency was significantly reduced on days 3 and 5 of the water maze test in the dapagliflozin group and on day 5 in the high-dose Gegen Qinliantang group (P<0.05). Platform crossings were significantly increased in both the dapagliflozin group and the high-dose Gegen Qinliantang group (P<0.05). Hippocampal pathological damage was alleviated to varying degrees in the dapagliflozin group and the low- and high-dose Gegen Qinliantang groups, with significantly increased expression of PSD-95 and SYN (P<0.01). Further studies revealed that both low- and high-dose Gegen Qinliantang reduced hippocampal IL-1β levels and the CD16/32+/IBA1+ positive rate of microglia, while the high-dose group also significantly reduced hippocampal TNF-α levels and the p-NF-κB p65/NF-κB p65 (P<0.05, P<0.01). ConclusionGegen Qinliantang can improve hyperglycemia, cognitive dysfunction, and synaptic damage in DCI, inhibit M1 polarization of microglia and neuroinflammation, and its mechanism may be related to the inhibition of NF-κB activation.
8.Mechanism of Gegen Qinliantang in Regulating Microglia Polarization to Improve Diabetic Cognitive Impairment
Hui FENG ; Chunxiang ZHOU ; Tianyi REN ; Weiwei TAO ; Yun LING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):1-10
ObjectiveTo explore the protective effect and underlying mechanism of Gegen Qinliantang on cognitive function in db/db mice with diabetic cognitive impairment (DCI). MethodsThirty-two 8-week-old male db/db mice were randomly assigned to the model group, dapagliflozin group (1.0 mg·kg-1·d-1), low-dose Gegen Qinliantang group (6.24 g·kg-1·d-1), and high-dose Gegen Qinliantang group (24.96 g·kg-1·d-1). Eight db/m mice served as the normal group. All mice were administered the corresponding treatment once daily by gavage for 10 consecutive weeks. Body weight and fasting blood glucose (FBG) were dynamically monitored. The Morris water maze test was used to evaluate cognitive function. Hematoxylin-eosin (HE) staining and Nissl staining were used to observe pathological changes in the hippocampus. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in hippocampal tissue. Immunofluorescence double staining was used to detect the co-expression of M1 microglial marker CD16/32 and ionized calcium-binding adapter molecule 1 (IBA1) in the hippocampus. Western blot analysis was performed to detect the protein expression of postsynaptic density protein 95 (PSD-95), synapsin (SYN), nuclear factor-κB p65 (NF-κB p65), and phosphorylated NF-κB p65 (p-NF-κB p65) in the hippocampus. ResultsCompared with the normal group, the model group showed significantly increased body weight and FBG levels (P<0.01), significantly prolonged escape latency and reduced platform crossings in the Morris water maze test (P<0.01), disordered arrangement of hippocampal neurons, nuclear pyknosis, increased neuronal necrosis, reduced Nissl bodies, decreased expression of synaptic proteins PSD-95 and SYN (P<0.01), increased CD16/32+ /IBA1+ positive rate, elevated levels of TNF-α and IL-1β, and an increased p-NF-κB p65/NF-κB p65 ratio (P<0.01). Compared with the model group, the dapagliflozin group exhibited significantly reduced FBG levels at weeks 5 and 10 (P<0.05, P<0.01) and increased body weight. The high-dose Gegen Qinliantang group showed significantly reduced FBG at week 10 (P<0.05). Escape latency was significantly reduced on days 3 and 5 of the water maze test in the dapagliflozin group and on day 5 in the high-dose Gegen Qinliantang group (P<0.05). Platform crossings were significantly increased in both the dapagliflozin group and the high-dose Gegen Qinliantang group (P<0.05). Hippocampal pathological damage was alleviated to varying degrees in the dapagliflozin group and the low- and high-dose Gegen Qinliantang groups, with significantly increased expression of PSD-95 and SYN (P<0.01). Further studies revealed that both low- and high-dose Gegen Qinliantang reduced hippocampal IL-1β levels and the CD16/32+/IBA1+ positive rate of microglia, while the high-dose group also significantly reduced hippocampal TNF-α levels and the p-NF-κB p65/NF-κB p65 (P<0.05, P<0.01). ConclusionGegen Qinliantang can improve hyperglycemia, cognitive dysfunction, and synaptic damage in DCI, inhibit M1 polarization of microglia and neuroinflammation, and its mechanism may be related to the inhibition of NF-κB activation.
9.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
10.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.


Result Analysis
Print
Save
E-mail