1.Genetic Transformation for Medicinal Plants: A Review
Haoxiyu ZHANG ; Longfei LIN ; Yuan YUAN ; Yuling LIU ; Hui LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):323-330
Medicinal plants, with diverse species, high heterozygosity, and special breeding objectives, can be hardly bred with conventional hybridization techniques. Plant genetic transformation is highly selective and can specifically change the traits of plants, serving as an important technical means for the breeding of medicinal plants. The commonly used plant genetic transformation technologies include Agrobacterium-mediated transformation and particle bombardment. Agrobacterium-mediated transformation is the most widely used method, while it is not applicable to all medicinal plants due to the high specificity. Although not specific, particle bombardment is limited in application due to the low conversion efficiency and external force damage to cells and tissue. With the rise and development of nanotechnology, the emerging nanomaterial-mediated transformation has solved the problems of the above two technologies. However, limited by its late development, the mechanism of nanomaterial-mediated introduction of genetic materials into plant cells remains unclear, and thus this technology is rarely used in medicinal plants. This article summarizes the development status of several commonly used or emerging plant genetic transformation technologies such as Agrobacterium-mediated transformation, particle bombardment, and nanomaterial-mediated transformation, as well as their application in different medicinal plants. Furthermore, this article looks forward to the development trend of genetic transformation technologies for plants and their application prospects in medicinal plants and Chinese materia medica resources, aiming to provide new technical ideas for the genetic improvement and germplasm innovation of medicinal plants and inject new impetus into the sustainable development of Chinese materia medica resources.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
4.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
5.HMGB1 gene knockout alleviates acute lung injury of sepsis mice via inhibiting TLR4/NF-κB pathway
Zhibin ZHANG ; Ruitong LI ; Weiwei ZHENG ; Xuerong LIN ; Ningning NIU ; Hui WANG ; Meng YUAN ; Shuchi HAN ; Qianlong XUE
Acta Universitatis Medicinalis Anhui 2024;59(2):248-253
Objective To study the effect of high mobility group box B1(HMGB1)gene knockout on alleviating a-cute lung injury and inhibiting toll-like receptor 4(TLR4)/nuclear factor-KB(NF-κB)pathway of sepsis mice.Methods Wild-type(WT)mice were divided into WT-Sham group and WT-model group,and HMGB1 knockout(KO)mice were divided into KO-sham group and KO-model group.Sepsis ALI model was established by cecal ligation and perforation in WT-model group and KO-model group.Sham operation was performed in WT-Sham group and KO-Sham group.24 h after modeling,the partial pressure of arterial oxygen(PaO2)was detected,oxy-genation index(OI)was calculated,pathological changes of lung tissue were detected and lung injury score was calculated,the concentrations of tumor necrosis factor-α(TNF-α),interleukin-1 β(IL-1 β),interleukin-6(IL-6),reactive oxygen species(ROS),malondialdehyde(MDA),superoxide dismutase(SOD),in serum and lung tissues and the expression of HMGB1,TLR4 and nuclear NF-κB in lung tissues were detected.Results The PaO2,OI and the concentration of SOD in serum and lung tissue of WT-model group were lower than those of WT-Sham group,the lung injury scores,the concentrations of TNF-α,IL-1 β,IL-6,ROS and MDA in serum and lung tissue,and the expression levels of HMGB1,TLR4 and nuclear NF-κB in lung tissue were higher than those in WT-Sham group(P<0.05).HMGB1 was not expressed in lung tissue of KO-model group,and the concentrations of PaO2,OI and the concentration of SOD in serum and lung tissue of KO-model group were higher than those of WT-model group,the lung injury scores,the concentrations of TNF-α,IL-1β,IL-6,ROS and MDA in serum and lung tissue,and the expression levels of TLR4 and nuclear NF-κB in lung tissue were lower than those of the WT-model group(P<0.05).Conclusion HMGB1 gene knockout alleviates acute lung injury of sepsis mice,the re-lated molecular mechanism may be the inhibition of TLR4/NF-κB pathway mediated inflammation and oxidative stress.
6.Design of intelligent surgery management system
Chinese Medical Equipment Journal 2024;45(1):42-46
Objective To design an intelligent surgery management system for closed-loop management of the entire surgical process.Methods An intelligent surgery management system was developed with digital twin technology,Microsoft Visual Studio 12.0 development toolset and C# language,which realized multi-modal data acquisition with IoT devices such as radio frequency identification(RFID)bracelets,mobile terminals and positioning base stations and real-time data mirroring and gathering by change data capture(CDC)technology.There were four functional modules included in the system developed,including the modules for IoT device management,transfer process recording,intelligent management command chamber and surgical progress reminder.Results The system developed could provide real-time feedback on the operation status of all aspects of surgery,shorten the lengths of preoperative positioning and surgical reception and improve the satisfaction of both doctors and patients.Conclusion The system developed achieves closed-loop management and complete data traceability of the entire surgical process,helping to form an efficient and safe surgical operation management system.[Chinese Medical Equipment Journal,2024,45(1):42-46]
7.Analysis of epidemiological and clinical characteristics of 1247 cases of infectious diseases of the central nervous system
Jia-Hua ZHAO ; Yu-Ying CEN ; Xiao-Jiao XU ; Fei YANG ; Xing-Wen ZHANG ; Zhao DONG ; Ruo-Zhuo LIU ; De-Hui HUANG ; Rong-Tai CUI ; Xiang-Qing WANG ; Cheng-Lin TIAN ; Xu-Sheng HUANG ; Sheng-Yuan YU ; Jia-Tang ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(1):43-49
Objective To summarize the epidemiological and clinical features of infectious diseases of the central nervous system(CNS)by a single-center analysis.Methods A retrospective analysis was conducted on the data of 1247 cases of CNS infectious diseases diagnosed and treated in the First Medical Center of PLA General Hospital from 2001 to 2020.Results The data for this group of CNS infectious diseases by disease type in descending order of number of cases were viruses 743(59.6%),Mycobacterium tuberculosis 249(20.0%),other bacteria 150(12.0%),fungi 68(5.5%),parasites 18(1.4%),Treponema pallidum 18(1.4%)and rickettsia 1(0.1%).The number of cases increased by 177 cases(33.1%)in the latter 10 years compared to the previous 10 years(P<0.05).No significant difference in seasonal distribution pattern of data between disease types(P>0.05).Male to female ratio is 1.87︰1,mostly under 60 years of age.Viruses are more likely to infect students,most often at university/college level and above,farmers are overrepresented among bacteria and Mycobacterium tuberculosis,and more infections of Treponema pallidum in workers.CNS infectious diseases are characterized by fever,headache and signs of meningeal irritation,with the adductor nerve being the more commonly involved cranial nerve.Matagenomic next-generation sequencing improves clinical diagnostic capabilities.The median hospital days for CNS infectious diseases are 18.00(11.00,27.00)and median hospital costs are ¥29,500(¥16,000,¥59,200).The mortality rate from CNS infectious diseases is 1.6%.Conclusions The incidence of CNS infectious diseases is increasing last ten years,with complex clinical presentation,severe symptoms and poor prognosis.Early and accurate diagnosis and standardized clinical treatment can significantly reduce the morbidity and mortality rate and ease the burden of disease.
8.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.
9.Research status of mechanisms of pancreatic islet beta cell injury in type 2 diabetes
Yan-Hui ZHAI ; Yong-Lin LIANG ; Dong AN ; Yuan-Yuan ZHANG ; Fei SU ; Xiao-Wen GUAN ; Xiang-Dong ZHU
The Chinese Journal of Clinical Pharmacology 2024;40(16):2442-2446
The number of type 2 diabetes(T2DM)accounts for more than 90%of all Diabetes mellitus(DM).The decrease of islet β cell mass and dysfunction are the core links of T2DM.With the prolongation of the course of disease,the number and function of β cells are gradually attenuated,and the damage mechanism has not been elucidated.At present,it is believed that it is closely related to metabolic stress,abnormal regulation of insulin secretion,changes in islet microenvironment,mitochondrial damage,glycolipid toxicity and dedifferentiation of islet β cells.Therefore,the mechanism of islet β cell damage in T2DM is summarized and elaborated in order to provide some reference for the precise intervention of T2DM.
10.The significance of plasma BMPR1A and PLAC8 gene methylation levels in predicting early postoperative recurrence in liver cancer patients
Yongheng HUANG ; Chan XIE ; Bo HU ; Hui WANG ; Yuan FENG ; Nan LIN
Chinese Journal of Laboratory Medicine 2024;47(4):413-418
Objective:To explore the role of combined detection of cell free BMPR1A and PLAC8 gene methylation in plasma in predicting postoperative recurrence of hepatocellular carcinoma.Methods:Case series study. Patients with stage Ⅰ-Ⅳ hepatocellular carcinoma who were treated at the Third Affiliated Hospital of Sun-Yat-sen University from January 2022 to July 2023 were selected. All enrolled patients underwent alpha fetoprotein (AFP) and imaging assessments 1 month, 3 months, 6 months, 9 months, and 12 months after treatment. Simultaneously, peripheral blood of patients was extracted for plasma circulating tumor DNA (ctDNA) methylation detection, and the results of free BMPR1A and PLAC8 gene methylation detection in patients′ plasma after treatment were compared with the positive rate of traditional tumor marker AFP detection. Draw the receiver operating characteristic curve (ROC) of the subjects to demonstrate the effectiveness of this method in predicting the recurrence of hepatocellular carcinoma. Based on the results of cell free DNA methylation and whether AFP is more than 7 μg/L, hepatocellular carcinoma patients were divided into high-risk methylation group (12 cases), low-risk methylation group (21 cases), high-risk AFP group (15 cases), and Kaplan Meier survival analysis was performed on them.Results:The sensitivity and specificity of combined detection of free BMPR1A PLAC8 gene methylation in plasma for predicting liver cancer recurrence were 66.7% and 88.9%, respectively. The area under curve (AUC) of BMPR1A PLAC8 gene methylation detection for liver cancer recurrence were 0.770 and 0.778, and the AFP was 0.522 in ROC curve analysis. Compared to imaging examinations, cell free DNA methylation detection can detect the recurrence of hepatocellular carcinoma on average by 58.3 days in advance(53.8 days vs 112.1 days). The progression free survival rate of the high-risk group based on free DNA methylation prediction at 400 days was 22.2%, significantly lower than the low-risk group (76.2%, P<0.001). Conclusion:Compared to AFP, detecting the methylation of BMPR1A and PLAC8 genes can predict the recurrence of hepatocellular carcinoma more accurately, making it a practical method for monitoring liver cancer recurrence.

Result Analysis
Print
Save
E-mail