1.Mechanism of Zuogui Jiangtang Jieyu Prescription Against Damage to Hippocampal Synaptic Microenvironment via Suppressing GluR2/Parkin Signal-mediated Mitophagy in Rats with Diabetes-related Depression
Jian LIU ; Lin LIU ; Xiaoyuan LIN ; Wei LI ; Yuhong WANG ; Hui YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):104-112
ObjectiveTo reveal the mechanism of Zuogui Jiangtang Jieyu prescription against damage to hippocampal synaptic microenvironment via suppressing glutamate receptor 2 (GluR2)/Parkin signal-mediated mitophagy in rats with diabetes-related depression (DD). MethodsEighty male SD rats underwent adaptive feeding for 5 days before the study. Ten rats were randomly assigned to the normal group. The model of DD rats was established with the rest by 2-week high-fat diet + streptozotocin (STZ) tail intravenous injection + 28 days of chronic unpredictable mild stress (CUMS) combined with isolation. The rats were randomly divided into a normal group, a model group, a GluR2 blocker group (5 μg·kg-1), a GluR2 agonist group (10 μg·kg-1), a metformin + fluoxetine group (0.18 g·kg-1 metformin + 1.8 mg·kg-1 fluoxetine), and high- and low-dose Zuogui Jiangtang Jieyu prescription groups (20.52 and 10.26 g·kg-1, respectively). The rats in the GluR2 blocker group and the GluR2 agonist group were continuously injected with CNQX and Cl-HIBO in the dentate gyrus of the hippocampus once a week starting from stress modeling, respectively, while the metformin + fluoxetine group and the high- and low-dose Zuogui Jiangtang Jieyu prescription groups were continuously given intragastric administration for 28 d at the same time of stress modeling. Depression-like behavior was evaluated by open field and forced swimming experiments. The levels of serum insulin and adenosine triphosphate (ATP) in hippocampus were detected by biochemical analysis. The levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in hippocampus were detected by enzyme-linked immunosorbent assay (ELISA). The autophagosomes of hippocampal neurons were observed by transmission electron microscopy. The morphology and structure of dendrites and spines of hippocampal neurons were evaluated by Golgi staining. Western blot detected the expression levels of GluR2 and Parkin proteins in hippocampus. The expression levels of GluR2, Parkin, regulating synaptic membrane exocytosis protein 3 (RIMS3), and postsynaptic density protein 95 (PSD95) in the dentate gyrus of the hippocampus were detected by immunofluorescence. ResultsCompared with the normal group, the model group exhibited reduced total activity distance in the open field and increased immobility time in forced swimming (P<0.01), lowered levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.01), increased autophagosomes of hippocampal neurons, significantly damaged morphology and structure of dendrites and spines of hippocampal neurons, decreased expression levels of GluR2, RIMS3, and PSD95 in hippocampus, and an increased Parkin expression level (P<0.05, P<0.01). Compared with the model group, the GluR2 blocker group and the GluR2 agonist group showed aggravation and alleviation of the above abnormal changes, respectively (P<0.05, P<0.01). The above depression-like behavior was significantly improved in the high- and low-dose Zuogui Jiangtang Jieyu prescription groups to different degrees. Specifically, the two groups saw elevated levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.05, P<0.01), restrained increase in autophagosomes and damage to morphology and structure of dendrites and spines of hippocampal neurons, up-regulated protein expression levels of GluR2, RIMS3, and PSD95, and down-regulated Parkin expression level (P<0.05, P<0.01). ConclusionZuogui Jiangtong Jieyu prescription can ameliorate the mitophagy-mediated damage to hippocampal synaptic microenvironment in DD rats, the mechanism of which might be related to the regulation of GluR2/Parkin signaling pathway.
2.Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis
Jian LIU ; Hongchun ZHANG ; Chengxiang WANG ; Hongsheng CUI ; Xia CUI ; Shunan ZHANG ; Daowen YANG ; Cuiling FENG ; Yubo GUO ; Zengtao SUN ; Huiyong ZHANG ; Guangxi LI ; Qing MIAO ; Sumei WANG ; Liqing SHI ; Hongjun YANG ; Ting LIU ; Fangbo ZHANG ; Sheng CHEN ; Wei CHEN ; Hai WANG ; Lin LIN ; Nini QU ; Lei WU ; Dengshan WU ; Yafeng LIU ; Wenyan ZHANG ; Yueying ZHANG ; Yongfen FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):182-188
The Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis (GS/CACM 337-2023) was released by the China Association of Chinese Medicine on December 13th, 2023. This expert consensus was developed by experts in methodology, pharmacy, and Chinese medicine in strict accordance with the development requirements of the China Association of Chinese Medicine (CACM) and based on the latest medical evidence and the clinical medication experience of well-known experts in the fields of respiratory medicine (pulmonary diseases) and pediatrics. This expert consensus defines the application of Qinbaohong Zhike oral liquid in the treatment of cough and excessive sputum caused by phlegm-heat obstructing lung, acute bronchitis, and acute attack of chronic bronchitis from the aspects of applicable populations, efficacy evaluation, usage, dosage, drug combination, and safety. It is expected to guide the rational drug use in medical and health institutions, give full play to the unique value of Qinbaohong Zhike oral liquid, and vigorously promote the inheritance and innovation of Chinese patent medicines.
3.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
4.Guidelines for vaccination of kidney transplant candidates and recipients in China
Jian Zhang ; Jun Lin ; Weijie Zhang ; Xiaoming Ding ; Xiaopeng Hu ; Wujun Xue
Organ Transplantation 2025;16(2):177-190
In order to further standardize the vaccination of kidney transplant candidates and recipients in China, the Branch of Organ Transplantation of Chinese Medical Association has organized experts in kidney transplantation and infectious diseases. Based on the "Vaccination of Solid Organ Transplant Candidates and Recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice", and in combination with the clinical reality of infectious diseases and vaccination after organ transplantation in China, as well as referring to relevant recommendations from home and abroad in recent years, these guidelines are formulated from aspects such as epidemiology, types of vaccines, vaccination principles, target population, and specific vaccine administration. The "Guidelines for Vaccination of Kidney Transplant Candidates and Recipients in China" aims to provide theoretical reference for medical workers in the field of kidney transplantation in China, regarding the vaccination of kidney transplant candidates and recipients. It is expected to better guide the vaccination of kidney transplant candidates and recipients, reduce the risk of postoperative infection, and improve survival outcomes.
5.Prediction of Protein Thermodynamic Stability Based on Artificial Intelligence
Lin-Jie TAO ; Fan-Ding XU ; Yu GUO ; Jian-Gang LONG ; Zhuo-Yang LU
Progress in Biochemistry and Biophysics 2025;52(8):1972-1985
In recent years, the application of artificial intelligence (AI) in the field of biology has witnessed remarkable advancements. Among these, the most notable achievements have emerged in the domain of protein structure prediction and design, with AlphaFold and related innovations earning the 2024 Nobel Prize in Chemistry. These breakthroughs have transformed our ability to understand protein folding and molecular interactions, marking a pivotal milestone in computational biology. Looking ahead, it is foreseeable that the accurate prediction of various physicochemical properties of proteins—beyond static structure—will become the next critical frontier in this rapidly evolving field. One of the most important protein properties is thermodynamic stability, which refers to a protein’s ability to maintain its native conformation under physiological or stress conditions. Accurate prediction of protein stability, especially upon single-point mutations, plays a vital role in numerous scientific and industrial domains. These include understanding the molecular basis of disease, rational drug design, development of therapeutic proteins, design of more robust industrial enzymes, and engineering of biosensors. Consequently, the ability to reliably forecast the stability changes caused by mutations has broad and transformative implications across biomedical and biotechnological applications. Historically, protein stability was assessed via experimental methods such as differential scanning calorimetry (DSC) and circular dichroism (CD), which, while precise, are time-consuming and resource-intensive. This prompted the development of computational approaches, including empirical energy functions and physics-based simulations. However, these traditional models often fall short in capturing the complex, high-dimensional nature of protein conformational landscapes and mutational effects. Recent advances in machine learning (ML) have significantly improved predictive performance in this area. Early ML models used handcrafted features derived from sequence and structure, whereas modern deep learning models leverage massive datasets and learn representations directly from data. Deep neural networks (DNNs), graph neural networks (GNNs), and attention-based architectures such as transformers have shown particular promise. GNNs, in particular, excel at modeling spatial and topological relationships in molecular structures, making them well-suited for protein modeling tasks. Furthermore, attention mechanisms enable models to dynamically weigh the contribution of specific residues or regions, capturing long-range interactions and allosteric effects. Nevertheless, several key challenges remain. These include the imbalance and scarcity of high-quality experimental datasets, particularly for rare or functionally significant mutations, which can lead to biased or overfitted models. Additionally, the inherently dynamic nature of proteins—their conformational flexibility and context-dependent behavior—is difficult to encode in static structural representations. Current models often rely on a single structure or average conformation, which may overlook important aspects of stability modulation. Efforts are ongoing to incorporate multi-conformational ensembles, molecular dynamics simulations, and physics-informed learning frameworks into predictive models. This paper presents a comprehensive review of the evolution of protein thermodynamic stability prediction techniques, with emphasis on the recent progress enabled by machine learning. It highlights representative datasets, modeling strategies, evaluation benchmarks, and the integration of structural and biochemical features. The aim is to provide researchers with a structured and up-to-date reference, guiding the development of more robust, generalizable, and interpretable models for predicting protein stability changes upon mutation. As the field moves forward, the synergy between data-driven AI methods and domain-specific biological knowledge will be key to unlocking deeper understanding and broader applications of protein engineering.
6.Distribution of platelet antibodies and their specificity in Zhongshan area
Huiyan LIN ; Yonglun WU ; Ainong SUN ; Yuru FANG ; Qianying CHEN ; Qiao LI ; Yujue WANG ; Hongmei WANG ; Zhizhao YANG ; Xiaoyi JIAN ; Xianguo XU ; Shengbao DUAN
Chinese Journal of Blood Transfusion 2024;37(1):63-67
【Objective】 To investigate the frequency of platelet antibodies in voluntary blood donors and patients in Zhongshan, Guangdong Province, and to study the specificity and cross-matching of platelet antibodies. 【Methods】 Platelet antibodies of blood donors and patients were screened by solid-phase immunoadsorption (SPIA), rechecked by flow cytometry (FCM), and antibody specificity was identified by PakPlus enzyme immunoassay, and platelet cross-matching was simulated by SPIA. 【Results】 A total of 1 049 blood donor samples and 598 patient samples were tested, with 6 (0.57%) and 49 (8.19%) samples positive for SPIA,respectively(P<0.05); In SPIA positive samples, the positive concordance rate of FCM in blood donors and patients was 100% vs 95%, and that of enzyme immunoassay was 100% vs 88%. Among the initial screening positive samples of blood donors, 5 were anti-HLA Ⅰ antibodies, accounting for 83%, and 1 was anti CD36 antibody, accounting for 17%, with an incidence rate of 0.10%. Among the 14 samples of enzyme immunoassay positive patients, 2 were anti-GP Ⅱb/Ⅲa, 1 was anti-GP Ⅱa/Ⅱa, 8 were anti HLA Ⅰ, and 3 were mixed antibodies (HLA Ⅰ, GP Ⅱb/Ⅲa, GP Ⅰa/Ⅱa). According to the types of antibodies, HLA Ⅰ antibodies were the most common, accounting for 65% (11/17), followed by HPA related anti GP, accounting for 35% (6/17). The majority of patients had a platelet antibody positive typing rate below 30%, accounting for 71.4% (10/14). 【Conclusions】 The positive rate of platelet antibody of patients in Zhongshan area is significantly higher than that of voluntary blood donors, and most of them are anti-HLA Ⅰ and anti-GP, and the incidence of anti-CD36 is extremely low. Therefore, it is necessary to establish a known platelet antigen donor bank, and at the same time, carry out platelet antibody testing and matching of patients, which is helpful to solve the issue of platelet transfusion refractoriness.
7.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
8.A clinical and electrodiagnostic study of peripheral neuropathy in prediabetic patients
Fan JIAN ; Lin CHEN ; Na CHEN ; Jingfen LI ; Ying WANG ; Lei ZHANG ; Feng CHENG ; Shuo YANG ; Hengheng WANG ; Lin HUA ; Ruiqing WANG ; Yang LIU ; Hua PAN ; Zaiqiang ZHANG
Chinese Journal of Neurology 2024;57(3):248-254
Objective:To explore the clinical and electrophysiological characteristics of peripheral neuropathy in prediabetic patients.Methods:Subjects aged 20-65 years with high-risk factors of impaired glycemia enrolled in Beijing Tiantan Hospital, Capital Medical University from 2019 to 2022 were recruited to conduct oral glucose tolerance test, after excluding other causes of neuropathy or radiculopathy. Patients with impaired fasting glucose or impaired glucose tolerance were defined by American Diabetes Association criteria. These patients were divided into clinical polyneuropathy (PN) and clinical non-PN groups, according to the 2010 Toronto consensus criteria and the presence of PN symptoms and signs or not. Nerve conduction studies (NCS), F wave, sympathetic skin response (SSR), R-R interval variation (RRIV) and current perception thresholds (CPT) were performed and the abnormal rate was compared between different electrodiagnostic methods and between clinical subgroups.Results:Among the 73 prediabetic patients ultimately enrolled, only 20 (27.4%) can be diagnosed as clinical PN according to the Toronto consensus criteria. The abnormal rate of CPT (68.5%, 50/73) was significantly higher than those of F wave (2.7%, 2/73), lower limb NCS (0, 0/73), upper limb NCS changes of carpal tunnel syndrome (26.0%, 19/73), SSR (6.8%, 5/73) and RRIV (5.5%, 4/73; McNemar test, all P<0.001). With sinusoid-waveform current stimuli at frequencies of 2 000 Hz, 250 Hz and 5 Hz, the CPT device was used to measure cutaneous sensory thresholds of large myelinated, small myelinated and small unmyelinated sensory fibers respectively. CPT revealed a 21.9% (16/73) abnormal rate of unmyelinated C fiber in the hands of prediabetic patients, significantly higher than that of large myelinated Aβ fibers [8.2% (6/73), χ2=5.352, P=0.021]. Both abnormal rates of small myelinated Aδ [42.5% (31/73)] and unmyelinated C fibers [39.7% (29/73)] in the feet of prediabetic patients were significantly higher than that of large myelinated Aβ fibers [11.0% (8/73), χ2=18.508, 15.965, both P<0.001]. Compared with the clinical non-PN group, the abnormal rates of CPT [90.0% (18/20) vs 60.4% (32/53), χ2=5.904, P=0.015] and SSR [20.0% (4/20) vs 1.9% (1/53), P=0.016) were significantly higher in the clinical PN group. Conclusions:Peripheral neuropathies in prediabetic patients are usually asymptomatic or subclinical, and predispose to affect unmyelinated and small myelinated sensory fibers. Selective electrodiagnostic measurements of small fibers help to detect prediabetic neuropathies in the earliest stages of the disease.
9.Ischemia-reperfusion injury in total knee arthroplasty
Yifeng YANG ; Jian HUANG ; Nan YE ; Lin WANG
Chinese Journal of Tissue Engineering Research 2024;28(6):955-960
BACKGROUND:The mechanism,manifestation,prevention and treatment of ischemia-reperfusion injury have been reported in the past.However,there are few studies on the ischemia-reperfusion injury of lower limb skeletal muscle caused by total knee arthroplasty.This article focuses on the pathogenesis,clinical impact,prevention and treatment of the ischemia-reperfusion injury of lower limb caused by total knee arthroplasty. OBJECTIVE:To summarize the related literature of lower limb ischemia-reperfusion injury caused by total knee arthroplasty,analyze the mechanism and significance,and give hints for further research on skeletal muscle ischemia-reperfusion injury. METHODS:The relevant articles on PubMed,CNKI,WanFang and VIP databases published from January 1,2000 to April 30,2022 were searched by computer with the Chinese and English search terms of"ischemia-reperfusion injury,total knee arthroplasty,tourniquet,mechanism,pathophysiology,skeletal muscle,treatment".After excluding repetitive research and some basic articles with low correlation,68 articles were finally selected for review. RESULTS AND CONCLUSION:(1)The pathogenesis of ischemia-reperfusion injury is related to oxygen free radicals,intracellular calcium overload,neutrophil activation,as well as high concentration of nitric oxide,no reflow phenomenon,apoptosis and other mechanisms.More detailed mechanism research can provide basis for future prevention and treatment.(2)Ischemia-reperfusion injury of lower limbs will cause local skeletal muscle injury,which may be caused by the trauma of the operation itself or the role of ischemia-reperfusion injury.More targeted research is needed to distinguish the relationship between the two.(3)Ischemia-reperfusion injury of lower limbs may even affect the distal organs,causing kidney and lung damage.It also affects local and systemic circulation.(4)To clarify the effect of ischemia-reperfusion injury can point out the direction for future prevention and treatment.The current prevention and treatment measures mainly include ischemic preconditioning,anesthetic,antioxidant and other drug prevention.(5)The detailed review of ischemia-reperfusion injury of lower limb skeletal muscle caused by total knee arthroplasty can provide basis for future diagnosis and treatment decisions.
10.Signaling pathway of dexmedetomidine against ischemia-reperfusion injury
Yifeng YANG ; Nan YE ; Lin WANG ; Shuaicheng GUO ; Jian HUANG
Chinese Journal of Tissue Engineering Research 2024;28(9):1464-1469
BACKGROUND:Dexmedetomidine has the effect of anti-ischemia-reperfusion injury,but the comprehensive and systematic review of its signaling pathway is less. OBJECTIVE:To focus on the review of dexmedetomidine's signaling pathway in the mechanisms of antioxidant stress,inhibition of inflammation,anti-apoptosis,autophagy,and so on. METHODS:The relevant articles on PubMed,CNKI,WanFang,and VIP databases were searched by computer with the key words"ischemia-reperfusion inquiry;dexmedetomidine;signal path;oxidative stress;inflammation;apoptosis"in Chinese and English.After excluding repetitive research and some basic articles with low correlation,57 articles were finally included for review. RESULTS AND CONCLUSION:(1)Dexmedetomidine plays an important role in organ protection through many mechanisms,such as anti-oxidative stress injury,anti-inflammation,anti-apoptosis and autophagy.This involves many pathways,including Nrf2 and its downstream protein antioxidant stress pathway,Toll-like receptor 4 family and nuclear factor-κB-related anti-inflammatory pathway,JAK2/STAT3-related anti-inflammatory pathway,and cholinergic anti-inflammatory pathway,and the cholinergic pathway is the upstream mechanism of many nuclear factor-κB signaling pathways.(2)PI3K/Akt pathway plays different roles according to its activated downstream signals,inhibiting the activation of NLRP3 inflammatory body,activating signal molecules endothelial nitric oxide synthase,mammalian target of rapamycin,and hypoxia-inducible factor 1α to play an anti-inflammatory role,and activate Bad or Bax residues to play an anti-apoptotic role,and PI3K/Akt activates glycogen synthetase kinase-3β.It can also play an anti-inflammatory and anti-apoptotic role.(3)Dexmedetomidine activates SIRT3 to mediate anti-apoptosis and inhibit endoplasmic reticulum stress to produce anti-apoptosis.(4)The detailed review of the anti-ischemia-reperfusion injury signaling pathway of dexmedetomidine can provide a basis for future mechanism research and diagnosis and treatment decisions.

Result Analysis
Print
Save
E-mail