1.Optimization of simmering technology of Rheum palmatum from Menghe Medical School and the changes of chemical components after processing
Jianglin XUE ; Yuxin LIU ; Pei ZHONG ; Chanming LIU ; Tulin LU ; Lin LI ; Xiaojing YAN ; Yueqin ZHU ; Feng HUA ; Wei HUANG
China Pharmacy 2025;36(1):44-50
OBJECTIVE To optimize the simmering technology of Rheum palmatum from Menghe Medical School and compare the difference of chemical components before and after processing. METHODS Using appearance score, the contents of gallic acid, 5-hydroxymethylfurfural (5-HMF), sennoside A+sennoside B, combined anthraquinone and free anthraquinone as indexes, analytic hierarchy process (AHP)-entropy weight method was used to calculate the comprehensive score of evaluation indicators; the orthogonal experiment was designed to optimize the processing technology of simmering R. palmatum with fire temperature, simmering time, paper layer number and paper wrapping time as factors; validation test was conducted. The changes in the contents of five anthraquinones (aloe-emodin, rhein, emodin, chrysophanol, physcion), five anthraquinone glycosides (barbaloin, rheinoside, rhubarb glycoside, emodin glycoside, and emodin methyl ether glycoside), two sennosides (sennoside A, sennoside B), gallic acid and 5-HMF were compared between simmered R. palmatum prepared by optimized technology and R. palmatum. RESULTS The optimal processing conditions of R. palmatum was as follows: each 80 g R. palmatum was wrapped with a layer of wet paper for 0.5 h, simmered on high heat for 20 min and then simmered at 140 ℃, the total simmering time was 2.5 h. The average comprehensive score of 3 validation tests was 94.10 (RSD<1.0%). After simmering, the contents of five anthraquinones and two sennosides were decreased significantly, while those of 5 free anthraquinones and gallic acid were increased to different extents; a new component 5-HMF was formed. CONCLUSIONS This study successfully optimizes the simmering technology of R. palmatum. There is a significant difference in the chemical components before and after processing, which can explain that simmering technology slows down the relase of R. palmatum and beneficiate it.
2.Mechanism of Modified Shaofu Zhuyutang in Antagonising Ectopic Endometrial Tissue Fibrosis Based on Cellular Pyroptosis Mediated by TRL4/NF-κB/NLPR3 Signaling Pathway
Zuoliang ZHANG ; Jiaxing WANG ; Wanrun WANG ; Xiangyu LIN ; Bin YUE ; Zhirui ZHANG ; Yinan WANG ; Yaling YANG ; Dongqing WEI ; Cancan HUANG ; Quansheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):19-28
ObjectiveTo investigate the mechanism of action of modified Shaofu Zhuyutang in antagonizing cellular pyroptosis and fibrosis in ectopic endometrial tissues of endometriosis through the Toll-like receptor 4/nuclear factor-κB/NOD-like receptor protein 3 (TRL4/NF-κB/NLPR3) signaling pathway. MethodsSeventy-two SPF-grade female SD rats were randomly divided into a sham-operated group (n = 12) and a modeling group (n = 60). The rats in the sham-operated group underwent a caesarean section, while the rats in the modeling group were used to establish an endometriosis model through the auto-transplantation method. After successful modeling, the animals were randomly divided into the model group, progesterone group (0.25 mg·kg-1), and modified Shaofu Zhuyutang low-, medium-, and high-dose groups (7.5, 15, 30 g·kg-1), with 12 animals in each group. After 4 weeks of drug administration, voluntary activity and heat pain latency were observed. The rats were sacrificed for tissue collection, and Masson staining were used to observe histopathological changes in the endometrial tissues. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum levels of interleukin-18 (IL-18), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β). Immunohistochemistry (IHC) was used to detect the protein expression area of tumor necrosis factor-related factor 6 (TRAF6) and NLPR3 in the endometrial tissues. Immunofluorescence (IF) was used to detect the relative fluorescence intensity of Caspase-1 and gasdermin D (GSDMD) in the endometrial tissues. Western blot was employed to measure the relative expression of TRL4, myeloid differentiation factor 88 (MyD88), TRAF6, NF-κB p65, phosphorylated NF-κB p65 (p-NF-κB p65), and NLPR3 proteins in endometrial tissues. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of TRL4, MyD88, TRAF6, NF-κB, and NLPR3 in the endometrial tissues. ResultsCompared with the sham-operated group, rats in the model group showed reduced voluntary activity and shorter heat pain latency. Serum levels of IL-18, IL-1β, TNF-α, and TGF-β were elevated. The relative expression areas of TRAF6 and NLPR3 proteins were increased, and the relative fluorescence intensity of Caspase-1 and GSDMD was enhanced. The relative expression of TRL4, MyD88, TRAF6, NF-κB p65, p-NF-κB p65, and NLPR3 proteins, along with the expression of TRL4, MyD88, TRAF6, NF-κB, and NLPR3 mRNA, were significantly increased (P<0.01). Compared with the model group, rats in the progesterone group and the modified Shaofu Zhuyutang medium- and high-dose groups exhibited improved voluntary activity, longer heat pain latency, the fibrosis of endometrial tissue is alleviated. Serum levels of IL-18, IL-1β, TNF-α, and TGF-β were decreased. The relative expression areas of TRAF6 and NLPR3 proteins decreased, and the relative fluorescence intensity of Caspase-1 and GSDMD weakened. The relative expression of TRL4, MyD88, TRAF6, p-NF-κB p65, NLPR3 proteins, and TRL4, MyD88, TRAF6, NF-κB, and NLPR3 mRNA expression were reduced (P<0.05, P<0.01). ConclusionModified Shaofu Zhuyutang may play a therapeutic role in endometriosis by interfering with key proteins in the TRL4/NF-κB/NLPR3 signaling pathway, reducing NLRP3 inflammasome-induced cellular pyroptosis, antagonizing the fibrosis process in ectopic endometrial tissues, improving the inflammatory microenvironment in the pelvic cavity, and alleviating pain.
3.Mechanism of Modified Shaofu Zhuyutang in Treatment of Endometriosis Based on EGFR/PI3K/Akt Signaling Pathway
Yaling YANG ; Wanrun WANG ; Zuoliang ZHANG ; Xiangyu LIN ; Jiaxing WANG ; Cancan HUANG ; Xiujia JI ; Quansheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):29-38
ObjectiveTo observe the effects of modified Shaofu Zhuyutang on key proteins of the epidermal growth factor receptor (EGFR)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in SD rats with endometriosis. MethodsAfter successful establishment of an endometriosis model in 60 female SD rats of SPF grade via the auto-transplantation method, the rats were randomly divided into a model group, modified Shaofu Zhuyutang high-, medium-, and low-dose groups, and a gestrinone group, with another 12 rats serving as a blank group. The blank and model groups were administered 10 mL·kg-1 normal saline, while the high-, medium-, and low-dose groups received 30, 15, and 7.5 g·kg-1 modified Shaofu Zhuyutang, respectively. The gestrinone group was administered 0.25 mg·kg-1 gestrinone suspension. After four weeks of treatment, uterine contractions were induced with 2 U of oxytocin, and the writhing response of rats was observed. After 24 h, the rats were euthanized, and the weight and volume of ectopic endometrial tissue were recorded. Hematoxylin-eosin (HE) staining was used to observe pathological changes in endometrial tissues, while the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay was used to evaluate the apoptosis rate of endometrial tissues. Immunofluorescence was used to detect the relative expression areas of the B-cell lymphoma-2 gene-associated promoter (Bad) and B-cell lymphoma-2 (Bcl-2) proteins in endometrial tissues. Serum levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), epidermal growth factor (EGF), and EGFR were measured by enzyme-linked immunosorbent assay (ELISA). The relative protein expression levels of EGFR, PI3K, phosphorylated PI3K (p-PI3K), Akt, and phosphorylated Akt (p-Akt) in endometrial tissues were analyzed by Western blot. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression levels of EGFR, PI3K, and Akt. ResultsCompared with the blank group, the model group showed endometrial thickening, glandular and mesenchymal hyperplasia, a significant decrease in the relative expression area of Bad in ectopic endometrial tissues, a significant increase in the relative expression area of Bcl-2, and a significant reduction in the apoptosis rate as indicated by TUNEL staining. Serum levels of IL-1β, IL-6, TNF-α, EGF, and EGFR were significantly elevated (P<0.01). The relative protein expression levels of EGFR, PI3K, p-PI3K, Akt, and p-Akt, as well as the mRNA expression levels of EGFR, PI3K, and Akt, were also significantly increased (P<0.01). Compared with the model group, the high- and medium-dose groups of modified Shaofu Zhuyutang and the gestrinone group exhibited reduced glandular and mesenchymal hyperplasia to varying degrees, with dilated glandular lumens. The number of writhing responses was significantly reduced, the latency to writhing response was significantly prolonged, and the weight and volume of ectopic endometrial tissue were significantly decreased. The relative expression area of Bad in ectopic endometrial tissue was significantly increased, the relative expression area of Bcl-2 was significantly decreased, and the apoptosis rate was significantly elevated as shown by TUNEL staining. Serum levels of IL-1β, IL-6, TNF-α, EGF, and EGFR were significantly reduced, and the relative protein expression levels of EGFR, PI3K, p-PI3K, Akt, and p-Akt, as well as the mRNA expression levels of EGFR, PI3K, and Akt, were significantly decreased (P<0.05,P<0.01). ConclusionModified Shaofu Zhuyutang may exert therapeutic effects on endometriosis by interfering with key proteins of the EGFR/PI3K/Akt signaling pathway and inducing apoptosis in ectopic endometrial tissue.
4.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
5.Transfusion-transmitted hepatitis E
Baixun LI ; Tianxu LIU ; Liqin HUANG ; Yingnan DANG ; Lin WANG
Chinese Journal of Blood Transfusion 2025;38(1):38-42
Hepatitis E is an acute and self-limiting viral hepatitis caused by the hepatitis E virus (HEV). It has a higher mortality rate among immunosuppressed patients and pregnant women infected with HEV. Although HEV infections in humans are mostly caused by contaminated water or food worldwide, the incidence of transfusion-transmitted hepatitis E is continuously rising. Additionally, the prevalence of serum anti-HEV IgG in the blood donors in China is at a relatively high level, making it worth considering screening blood donors for HEV. This article briefly reviews the globally reported cases of transfusion-transmitted hepatitis E and the HEV screening strategies for blood donations.
6.Research progress on autologous blood patch pleurodesis
Jiawei HUANG ; Hanping LIANG ; Xihao XIE ; Wanli LIN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):136-140
Autologous blood patch pleurodesis (ABPP) was first proposed in 1987. Now it is mainly used to treat intractable pneumothorax and persistent air leakage after pneumonectomy, and also used to treat pneumothorax in children and other rare secondary pneumothorax. Persistent air leakage and pneumothorax of various causes are essentially alveolar pleural fistula. It can usually be treated by closed thoracic drainage, continuous negative pressure suction and surgery. Pleurodesis is a safe and effective alternative to surgery for patients who have failed conventional conservative treatment and can not receive operations. Compared with other pleurodesis adhesives, autologous blood (ABPP) is safer and more effective, and it is simple, painless, cheap and easy to be accepted by patients. But in the domestic and foreign researches in recent years, many details of ABPP treatment have not been standardized. For further research and popularization of ABPP, this article reviews the detailed regulations, efficacy and safety of this technology.
7.Research progress on the anti-tumor effects of traditional Chinese medicine through intervention in the Nrf2/GPX4 signaling pathway
Jie HUANG ; Si LIN ; Chunjuan JIANG ; Ling WEI
China Pharmacy 2025;36(4):507-512
Nuclear factor-erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway plays a key role in the occurrence and development of tumors, and is involved in tumor cell proliferation, apoptosis, ferroptosis, invasion, migration, and drug resistance. Based on the Nrf2/GPX4 signaling pathway, this paper summarizes the research progress of the anti- tumor effects of traditional Chinese medicine. It is found that flavonoids (ginkgetin, luteolin, etc.), terpenoids (atractylenolide, cucurbitacin B, etc.), saponins (polyphyllin Ⅰ, polyphyllin Ⅶ), ester (brusatol) and other effective components, and traditional Chinese medicine extracts (total coumarins in Pileostegia tomentella and total flavonoids of Pterocarya hupehensis Skan), traditional Chinese medicine compounds (Fushao diqin fang, Xiaoai jiedu fang, etc.) can promote ferroptosis in tumor cells by inhibiting Nrf2/GPX4 signaling pathway and the expressions of its upstream and downstream factor proteins, as well as by increasing Fe2+ levels and lipid peroxidation, thereby exerting an antitumor effect.
8.Research progress of Yttrium-90 microsphere selective internal radiation therapy in downstaging and conversion of hepatocellular carcinoma
Licong LIANG ; Yuchan LIANG ; Wensou HUANG ; Yongjian GUO ; Jingjun HUANG ; Liteng LIN ; Mingyue CAI ; Kangshun ZHU
Chinese Journal of Clinical Medicine 2025;32(1):9-14
The incidence and mortality of hepatocellular carcinoma (HCC) in China are among the highest in the world, imposing a heavy social burden. Liver resection and liver transplantation are the primary radical treatments for HCC, although most patients are no longer able to meet the surgical requirements at initial diagnosis. Yttrium-90 microsphere selective internal radiation therapy (90Y-SIRT) has the advantages of shrinking tumors, enlarging residual liver, regressing portal vein tumor thrombus and improving the quality of life, which can be used for conversion, downstaging and bridging therapy for HCC before surgical treatment, enabling patients regain the chance of radical treatment and reducing the postoperative recurrence rate. This review focuses on the clinical application and progress of 90Y-SIRT in this field.
9.Application of Yttrium-90 microsphere selective internal radiation therapy in downstaging and conversion of hepatocellular carcinoma: a case report
Ziwei LIANG ; Tiantian ZHANG ; Yong LIAO ; Xin HUANG ; Bin LIANG ; Zhongbin HANG ; Yan ZHANG ; Lin ZHANG ; Xiaobin FENG ; Li HUO
Chinese Journal of Clinical Medicine 2025;32(1):41-45
This case report describes a 68-year-old male patient diagnosed with primary hepatocellular carcinoma (HCC). After receiving Yttrium-90 microsphere selective internal radiation therapy (90Y-SIRT), the tumor significantly reduced in size, and tumor markers alpha fetoprotein (AFP) and abnormal prothrombin (PIVKA-Ⅱ) decreased. Postoperative pathological results showed minimal residual tumor cells, indicating that 90Y-SIRT has good efficacy and safety in downstaging and conversion of HCC, thereby facilitating subsequent surgical resection.
10.Effect and mechanism of Erastin on ferroptosis of acute myeloid leukemia cells
Xiandong Jiang ; Yingying Huang ; Xiaoying Hong ; Xindi Lin ; Donghong Lin ; Liping Lin
Acta Universitatis Medicinalis Anhui 2025;60(1):15-21
Objective :
To explore the role of lysophosphatidylcholine acyltransferase 3(LPCAT3) in Erastin-induced ferroptosis of acute myeloid leukemia(AML) cells and its related molecular regulatory mechanisms.
Methods :
Tetrazolium salt(MTS) method was used to detect the sensitivity of different AML cells to the classic ferroptosis inducer Erastin, real time quantitative polymerase chain reaction(qPCR) was used to detect the basal expression level ofLPCAT3mRNA, and the correlation between them was analyzed. Lentivirus-mediatedLPCAT3overexpression AML cell lines(OE group) and negative control lines(NC group) were constructed. After Erastin intervention, MTS, flow cytometry, and micromethods were used to detect cell viability, lipid reactive oxygen species(ROS), and Malondialdehyde(MDA), respectively. qPCR and Western blot were used to detect unfolded protein response(UPR) classic pathway signaling molecules(PERK, ATF4, GRP78, etc.) expression levels. The above ferroptosis-related indicators were detected after combined intervention with the UPR inhibitor 4-phenylbutyric acid(4-PBA), and the regulatory relationship was analyzed.
Results :
Four different types of AML cells had different sensitivities to ferroptosis, among which K562 cells were relatively insensitive. The IC50of the four types of AML cells to Erastin was negatively correlated with the expression level ofLPCAT3(r=-0.919,P<0.001). After Erastin intervention, the cell viability of K562 cells in the OE group was significantly inhibited by Erastin compared with the NC group(P<0.001), and the levels of lipid ROS and MDA increased(P<0.001). The results of qPCR and Western blot showed that, compared with the NC group, the mRNA and protein expression of UPR classic pathway moleculesPERK,ATF4, andGRP78mRNA and protein increased in the OE group(P<0.01). After inhibiting the UPR pathway by 4-PBA, the viability of K562 cells decreased(P<0.01), and lipid ROS and MDA levels increased(P<0.01) compared with the uninhibited state.
Conclusion
Overexpression ofLPCAT3can promote ferroptosis in K562 cells, and this process is negatively regulated by the classical UPR pathway PERK/ATF.


Result Analysis
Print
Save
E-mail